The chemical reaction of magnesium and sodium hydroxide would yield magnesium hydroxide and sodium. The chemical reaction is expressed as:
Mg(s)+ 2NaOH(aq)→Mg(OH)2(s)+2Na
In ionic form,
Mg(s) + 2Na+ + 2OH−(aq)→Mg(OH)2(s) + 2Na
Answer:
B. NH₃ (l) dissolves in water to form a solution
Explanation:
A solution is a uniform or homogenous mixture of two or more substances. The components of a solution are the solute and solvent. The solute is the substance that is being dissolved in another substance. The solvent is the substance which dissolves the solute.
Mixing the given solutes in water results innthe following:
A. Helium being an inert gas does not dissolve in water at all. Therefore, no solution is formed.
B. Liquid ammonia is very solution in water. When mixed with water, it dissolves in water to form aqueous ammonia solution. Aqueous ammonia is an alkaline solution of ammonia dissolved in water.
C. Silicon (iv) oxide, SiO₂, is a crystalline solid whichnis completely insoluble in water. Mixing it with water does not result in the formation of a solution.
D. Pentane, C₅H₁₂, is a liquid hydrocarbon substance which is insoluble in water. It does not mix with water to form a solution, rather it forms two separate immiscible layers of liquids.
Answer: Sodium chloride
Explanation:
Ocean water contains a number of substances. When a substance which has ionic bonds is dissolved in water it takes the form of ions.
The most common ions in ocean water are sodium and chloride. These are the ions formed when common salt, sodium chloride (NaCl) is dissolved in water.
Sodium chloride accounts for about 3% of ocean water by mass.
Ans: Moles of Fe(OH)2 produced is 5.35 moles.
Given reaction:
Fe(s) + 2NiO(OH) (s) + 2H2O(l) → Fe(OH)2(s) + 2Ni(OH)2(aq)
Based on the reaction stoichiometry:
1 mole of Fe reacts with 2 moles of NiO(OH) to produce 1 mole of Fe(OH)2
It is given that there are:
5.35 moles of Fe
7.65 moles of NiO(OH)
Here the limiting reagent is Fe
Therefore, number of moles of Fe(OH)2 produced is 5.35 moles.
Activation energy is a thermodynamic barrier that must be overcome before products are formed in a reaction. It is the minimum amount of energy needed for a reaction to occur. The energy can be in the form of kinetic or potential energy. This concept was introduced by Svante Arrhenius, which brought about the Arrhenius equation which is a formula used to determine rate of reactions.