Answer:
P2≈393.609Kpa so I think the answer is 394 kPa
Explanation:
PV=mRT Ideal Gas Law
m and R are constant because they dont change for the problem. That means
PV/T=mR = constant
so P1*V1/T1=P2*V2/T2 and note that the temperatures are in absolute temperatures (Kelvin) because you can't divide by zero.
So P2 = P1*V1*T2/(V2*T1) = 101325 Pa * 700 mL * 303K/(200 mL*273K)
P2 = 393609 Pa
A student builds a model of a race car. The scale is 1:15. In the scale model, the car is 8 cm tall. How tall is the actual car?
<h2>Answers:</h2>
<h3>A. 120 cm</h3>
#CarryOnLearning
This is the thing called the mass number of the thing
Answer:
3.81 g Pb
Explanation:
When a lead acid car battery is recharged, the following half-reactions take place:
Cathode: PbSO₄(s) + H⁺ (aq) + 2e⁻ → Pb(s) + HSO₄⁻(aq)
Anode: PbSO₄(s) + 2 H₂O(l) → PbO₂(s) + HSO₄⁻(aq) + 3H⁺ (aq) + 2e⁻
We can establish the following relations:
- 1 A = 1 c/s
- 1 mole of Pb(s) is deposited when 2 moles of e⁻ circulate.
- The molar mass of Pb is 207.2 g/mol
- 1 mol of e⁻ has a charge of 96468 c (Faraday's constant)
Suppose a current of 96.0A is fed into a car battery for 37.0 seconds. The mass of lead deposited is:

Answer:
Kc = [H₂S]² . [CH₄] / [ H₂O]⁴ . [CS₂]
Explanation:
The equilibrium constant indicates the % of the yield reaction and can shows where the reaction is going to be equilibrated.
It works with molar concentrations on the equilibrium and it does not consider the solids compounds
Kc also can be modified by the time of the reaction.
This reaction is:
CS₂ (g) + 4 H₂O(g) ⇌ CH₄ (g) + 2H₂S (g)
Kc = [H₂S]² . [CH₄] / [ H₂O]⁴ . [CS₂]