Answer:
The answer is given below.
Explanation:
We will consider the acid as HA and will set up an ICE table with the equilibrium dissociation of α.
AT pH 2.4 the initial H+ concentration will be 3.98^10-3 M
HA → H+ + A-
Initial concentration: 0.1 → 3.98 ^10-3 + 0
equilibrium concentration: 0.1(1-α) → 3.98 * 10-3 + 0.1α 0.1α
pKa of chloroacetic acid is 2.9
-log(Ka) = 2.9
Ka = 1.26 * 10-3
From the equation, Ka = [H+] * [A-] / [HA]
1.26 * 10-3 = (3.98 * 10-3 + 0.1α )* 0.1α / 0.1(1-α)
Since α<<1, we assume 1-α = 1
Solving the equation, we have: α = 0.094
Since this is the fraction of acid that has dissociated, we can say that % of base form = 100 * α= 9.4%
Explanation:
The given precipitation reaction will be as follows.

Here, AgCl is the precipitate which is formed.
It is known that molarity is the number of moles present in a liter of solution.
Mathematically, Molarity = 
It is given that volume is 1.14 L and molarity is 0.269 M. Therefore, calculate number of moles as follows.
Molarity = 
0.269 M = 
no. of moles = 0.306 mol
As molar mass of AgCl is 143.32 g/mol. Also, relation between number of moles and mass is as follows.
No. of moles = 
0.307 mol = 
mass = 43.99 g
Thus, we can conclude that mass of precipitate produced is 43.99 g.
The mass of an element listed in the Periodic Table is the weighted average of all its naturally occurring isotopes.
Naturally occurring carbon is about
99 % carbon-12 (12.000 u) + 1 % carbon-13 (13.003 u).
That extra carbon-13 makes the <em>average atomic mass</em> greater than 12.000 u.
It is true because you can see that the ice cream is physically (melting) changing due to heat.
Explanation:
Reaction equation:
CO + 2H₂ → CH₃OH
All the species are in gaseous state and the equation is balanced.
Change in pressure only affects equilibrium involving a gas or gases.
Based on Le Chatelier's principle, an increase in pressure will shift the position of equilibrium to the side having smaller volume or number of moles and vice versa.
CO + 2H₂ → CH₃OH
3moles of gases 1 mole of gas
An increase in pressure favors the forward reaction. A decrease in pressure will favor the backward step.