Answer:
2 half-lives=0.8
6 half-lives= 0.05
Explanation
Half-lives are constant and always decrease by half, implying that the concentration decreases by half at a consistent rate.
3.2/2= 1.6/2= 0.8 is two half-lives
3.2/2= 1.6/2= 0.8/2= 0.4/2= 0.2/2= 0.1/2=0.05 is six half-lives
Answer:
Option D) Compound B may have a lower molecular weight.
Explanation:
Compound A and B are standing at the same temperature yet compound A is evaporating more slowly than compound B.
This simply indicates that compound B have a lower molecular weight than compound A.
This can further be seen when gasoline and kerosene are placed under same temperature. The gasoline will evaporate faster than kerosene because the molecular weight of the gasoline is low when compared to that of the kerosene.
The final volume reading on the graduated cylinder is 12.52ml
Density = mass / volume
Volume = mass / density
Volume of zinc = 2.83/7.14
Volume of zinc = 0.3963
Initial volume = 12.13 ml
Total volume = initial volume+ volume of zinc
Total volume = 12.13 + 0.3963
Total volume = 12.5263 = 12.52 ml
To know more about volume to go the given link :
brainly.com/question/11510153
<h3>
Answer:</h3>
51.93 L
<h3>
Explanation:</h3>
From the question we are given the following components of an ideal gas;
Number of moles = 21.5 mol
Pressure, P = 9.65 atm
Temperature, T = 10.90°C, but K= °C + 273.15
=284.05 k
We are required to calculate the volume of the ideal gas.
We are going to use the ideal gas equation which is given by;
PV = nRT, where P, V, T and n are the pressure, volume, temperature and moles of the ideal gas respectively. R is the ideal gas constant, 0.082057 L.atm/mol.K
To get the volume, we rearrange the formula to get;
V = nRT ÷ P
= (21.5 × 0.082057 × 284.05 K) ÷ 9.65 atm
= 51.93 L
Thus, the volume of the ideal gas is 51.93 L
Answer:
Ethanol most easily forms hydrogen bonds.
Explanation:
The difference among the alcohols in this question is the size of carbonic chain and the position of the -OH group.
Ethanol has 2 carbons and the -OH group is terminal. The other alcohols have more carbons and the -OH group is not terminal. This means that the approximation of molecules will be facilitated for ethanol, and the interaction through hydrogen bons will be easier. However, for the other molecules, there will be steric hindrance, which will make it more difficult for the molecules to make hydrogen bonds.
The figure attached shows the alcohol structures.