1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
2 years ago
15

Who do the basic particles of a compound differ from the basic particles of an element

Physics
1 answer:
Musya8 [376]2 years ago
4 0
A compound is elements bonding together, an element is the pure substance
You might be interested in
Sort the units based on the measurement system they're used in
timurjin [86]

Answer:

Kelvin

Explanation:

fact as per the guideline given

7 0
3 years ago
A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C ex
irina1246 [14]

a)

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

F_{B_x}=0

F_{B_y}=0

b)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=0

F_{B_y}=3.21\cdot 10^{-3}N (+z axis)

c)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=3.21\cdot 10^{-3} N (+y axis)

F_{B_y}=3.21\cdot 10^{-3}N (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

F=qE

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

q=+4.9\mu C=+4.9\cdot 10^{-6}C is the charge

E_x=+242 N/C is the electric field, along the x-direction

So the electric force (along the x-direction) is:

F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N

towards positive x-direction.

The magnetic force instead is given by

F=qvB sin \theta

where

q is the charge

v is the velocity of the charge

B is the magnetic field

\theta is the angle between the directions of v and B

Here the charge is stationary: this means v=0, therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

F_{E_x}=1.19\cdot 10^{-3} N (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- B_x: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=0^{\circ}, so the force due to this field is zero.

- B_y: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=90^{\circ}. Therefore, \theta=90^{\circ}, so the force due to this field is:

F_{B_y}=qvB_y

where:

q=+4.9\cdot 10^{-6}C is the charge

v=345 m/s is the velocity

B_y = +1.9 T is the magnetic field

Substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

For the field B_x, the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

F_{B_x}=qvB_x

And by substituting,

F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field B_y, the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

F_{B_y}=qvB_y

And by substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

3 0
3 years ago
Famous comparative and superlative form​
Helga [31]

Answer:

comparative----more famous, superlative----- most famous

3 0
2 years ago
Read 2 more answers
A 67.0 kg crate is being raised by means of a rope. Its upward acceleration is 3.50 m/s2. What is the force exerted by the rope
serious [3.7K]
<span>A 67.0 kg crate is being raised by means of a rope. Its upward acceleration is 3.50 m/s2. What is the force exerted by the rope on the crate? 

</span>Newton's Second Law<span> of Motion states, “The force acting on an object is equal to the mass of that object times its acceleration.” We calculate as follows:
</span>
F = ma = 67.0 kg (3.50 m/s^2) = 234.5 J
7 0
2 years ago
Rocks formed from broken pieces of other rocks is classified as
chubhunter [2.5K]
C .Clastic,why you see  (clastic called Detrial ,made of broken rocks so the answer is C
3 0
3 years ago
Other questions:
  • To heat 1g of water by 1 C requires<br> A) 1 calorie<br> b)1 Carlorie<br> c) 1 Joule<br> d) 1 watt
    11·1 answer
  • A drag racer starts her car from rest and accelerates at 10.9 m/s^2 for the entire distance of 226 m. How long did it take the c
    9·1 answer
  • How do I find the approximate velocity of "the object", on the graph at 5 seconds?
    12·1 answer
  • Juggles the clown stands on one end of a teeter-totter at rest on the ground. Bangles the clown jumps off a platform 2.4 m above
    9·1 answer
  • how much energy is stored in a 7.0 cm spring that has a spring constant of 500 N/m when it is stretched 3.0 cm​
    10·1 answer
  • A 6.2 kg object moving in the +x direction at 5.3 m/s collides head-on with an 7.8 kg object moving in the −x direction at 2.5 m
    7·1 answer
  • Protons and ____ have electric charge?
    5·2 answers
  • The diagram below shows a golf ball being struck by a club. The ball leaves the club with a speed of 40 meters per second at an
    7·1 answer
  • Light passing through a double slit
    11·2 answers
  • Two pebbles, Pebble A and Pebble B, are thrown horizontally with the same force. Pebble A's mass is 3 times the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!