1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
10

A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C ex

ists along the +x axis. A magnetic field also exists, and its x and y components are Bx = +1.9 T and By = +1.9 T. Calculate the force (magnitude and direction) exerted on the particle by each of the three fields when it is (a) stationary, (b) moving along the +x axis at a speed of 345 m/s, and (c) moving along the +z axis at a speed of 345 m/s.
Physics
1 answer:
irina1246 [14]3 years ago
3 0

a)

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

F_{B_x}=0

F_{B_y}=0

b)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=0

F_{B_y}=3.21\cdot 10^{-3}N (+z axis)

c)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=3.21\cdot 10^{-3} N (+y axis)

F_{B_y}=3.21\cdot 10^{-3}N (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

F=qE

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

q=+4.9\mu C=+4.9\cdot 10^{-6}C is the charge

E_x=+242 N/C is the electric field, along the x-direction

So the electric force (along the x-direction) is:

F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N

towards positive x-direction.

The magnetic force instead is given by

F=qvB sin \theta

where

q is the charge

v is the velocity of the charge

B is the magnetic field

\theta is the angle between the directions of v and B

Here the charge is stationary: this means v=0, therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

F_{E_x}=1.19\cdot 10^{-3} N (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- B_x: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=0^{\circ}, so the force due to this field is zero.

- B_y: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=90^{\circ}. Therefore, \theta=90^{\circ}, so the force due to this field is:

F_{B_y}=qvB_y

where:

q=+4.9\cdot 10^{-6}C is the charge

v=345 m/s is the velocity

B_y = +1.9 T is the magnetic field

Substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

For the field B_x, the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

F_{B_x}=qvB_x

And by substituting,

F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field B_y, the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

F_{B_y}=qvB_y

And by substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

You might be interested in
The drawing shows a bicycle wheel resting against a small step whose height is h = 0.110 m. The weight and radius of the wheel a
Pavel [41]

Answer:

F=27.39N

Explanation:

Take sum of torques at the point the step touches the wheel, that eliminates two torques

ΣT=T_{N}+T_{f}+T_{W}

Since we are looking for when the wheel just starts to rise up N-> 0 so no torque due to normal force

T_{N}=0

The perpendicular lever arm for the F force is R-h

T_{f}=F*(r-h)

And the T of gravity according to the image

T_{W}=W*(\sqrt{r^2-(r-h)^2}

ΣT=0

T_{N}+T_{f}+T_{W}=0

F*(r-h)+W*(\sqrt{r^2-(r-h)^2}=0

F=\frac{W*(\sqrt{r^2-(r-h)^2}}{r-h}

F=\frac{24.9 N*(\sqrt{0.336^2-(0.336-0.110)^2}}{(0.336-0.11)}

F=27.39N

4 0
3 years ago
Help me, what is the shape of solid?​
Naily [24]

Explanation:

Solids have a definite shape and definite volume.

3 0
2 years ago
Read 2 more answers
A mountain-climber friend with a mass of 74 kg ponders the idea of attaching a helium-filled balloon to himself to effectively r
bazaltina [42]

Answer:

V=16.65 m^3

Explanation:

The volume of the balloon can be find compared the force in each cases so:

reduce 25% from 74kg

R=\frac{25}{100}*74kg=18.5kg

So the net force uproad on the balloon is

F_b=18.5kg*g

Now the density of the both gases air and helium are different however the volume is the same change offcorss the mass so:

P_h=\frac{m}{V}=0.179 kg/m^3

P_A=1.29 kg/m^3

F_b=F_A-F_H

F_b=m_a*g-m_h*g

m=P/V

18.5kg*g=(1.29kg/m^3-0.179kg/m^3*)V*g

V=\frac{18.5kg}{(1.29-0.179)kg/m^3}

V=16.65 m^3

4 0
3 years ago
Any help would be great! Thank you x<br><br><br> Giving brainliest answer xoxo
garri49 [273]

Answer:

A vacuum would have been created. I hope this helps have a great day

3 0
3 years ago
What adaptation does a wood frog have that enable it to survive in deciduous forest ?
sweet [91]

Wood frogs have this adaptation where they accumulate urea in their bodies and convert their liver glycogen to glucose to act as cryoprotectants. This prevents the formation of ice crystals in their bodies that could cause damage cells during freezing in winter.  

5 0
3 years ago
Read 2 more answers
Other questions:
  • Facts about light years
    5·2 answers
  • Which best describes the two main functions of transistors in circuits? resisting and amplifying measuring and switching resisti
    7·1 answer
  • A photon has an energy of 5.53 × 10–17 j. what is its frequency in s–1 (h = 6.63 × 10–34 j • s)?
    6·2 answers
  • which of the following describes how the Earth's magnetic pole is related to its geographical poles? A. the magnetic poles and g
    12·1 answer
  • Using complete sentences, explain why graphs are so important to scientists.
    15·1 answer
  • Why should people pay attention to scientists when making decisions?
    5·1 answer
  • Talia is on a trip with some friends. In the first 2 hours , they travel 100 miles. Then they hit traffic and go only 30 miles i
    13·1 answer
  • (17)) During adiabatic compression
    9·1 answer
  • 1. If a rock is dropped from a 600 meter cliff, how long will it take to hit the ground?<br> Dl
    5·1 answer
  • Doppler Effect: A stationary source produces a sound wave at a frequency of 50 Hz. The wave travels at 100 feet per second. A ca
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!