1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
10

A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C ex

ists along the +x axis. A magnetic field also exists, and its x and y components are Bx = +1.9 T and By = +1.9 T. Calculate the force (magnitude and direction) exerted on the particle by each of the three fields when it is (a) stationary, (b) moving along the +x axis at a speed of 345 m/s, and (c) moving along the +z axis at a speed of 345 m/s.
Physics
1 answer:
irina1246 [14]3 years ago
3 0

a)

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

F_{B_x}=0

F_{B_y}=0

b)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=0

F_{B_y}=3.21\cdot 10^{-3}N (+z axis)

c)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=3.21\cdot 10^{-3} N (+y axis)

F_{B_y}=3.21\cdot 10^{-3}N (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

F=qE

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

q=+4.9\mu C=+4.9\cdot 10^{-6}C is the charge

E_x=+242 N/C is the electric field, along the x-direction

So the electric force (along the x-direction) is:

F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N

towards positive x-direction.

The magnetic force instead is given by

F=qvB sin \theta

where

q is the charge

v is the velocity of the charge

B is the magnetic field

\theta is the angle between the directions of v and B

Here the charge is stationary: this means v=0, therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

F_{E_x}=1.19\cdot 10^{-3} N (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- B_x: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=0^{\circ}, so the force due to this field is zero.

- B_y: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=90^{\circ}. Therefore, \theta=90^{\circ}, so the force due to this field is:

F_{B_y}=qvB_y

where:

q=+4.9\cdot 10^{-6}C is the charge

v=345 m/s is the velocity

B_y = +1.9 T is the magnetic field

Substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

For the field B_x, the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

F_{B_x}=qvB_x

And by substituting,

F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field B_y, the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

F_{B_y}=qvB_y

And by substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

You might be interested in
Which of the following is NOT a type of scientist?
Ghella [55]
Cryptologist is not a scientist.
6 0
2 years ago
Read 2 more answers
The space station is 4.41 x 10^5 kg and orbits the earth 6.78 x 10^6 m from the center of earth. The mass of earth is 5.97 x 10^
allochka39001 [22]

Answer:

3 820 885 N

Explanation:

Gravitational equation

   F = G  m1 m2 / r^2    

         G = gravitational constant = 6.6713 x 10^-11 m^3/kg-s^2

F = 6.6713 x 10^-11   *   4.41 x 10^5  * 5.97 x 10^24  / ( 6.78x 10^6)^2

 = 3820885 .3 N

6 0
2 years ago
Why is gravitational force always towards the center?
lesya692 [45]

Answer:

i beleave cuz of the Earth is spherical

Explanation:

6 0
2 years ago
Read 2 more answers
Which of the following can only be a situation of increasing temperature?
Papessa [141]

Increasing the temperature causes an increase in the average kinetic energy of the particles of a material.

<h3>What is average kinetic energy of particles?</h3>

The average kinetic energy of particles is the energy possessed by particles due to their constant motion.

The constant motion of particles occurs due to the energy acquired by the particles, when the temperature of the particles increases, the average kinetic energy increases which in turn increases the speed of the particles.

Thus, we can conclude that, increasing the temperature causes an increase in the average kinetic energy of the particles of a material.

Learn more about average kinetic energy here: brainly.com/question/9078768

5 0
2 years ago
How can you justify that force is transferred to lift and throw soil using shovel?<br>​
Natali [406]

Forces are needed to lift, turn, move, open, close, push, pull, and so on. When you throw a ball, you are using force to make the ball move through the air. More than one force can act on an object at the same time.

4 0
2 years ago
Other questions:
  • The energy a glass has as you are holding it still above a table is
    6·2 answers
  • The most important barriers to diffusion today are physical features of Earth's surface.
    5·1 answer
  • Explain quantum zeno effect in one sentence
    13·1 answer
  • A person running has a momentum of 720 kg m/s and is traveling at a velocity of 5 m/s. What is his mass?
    15·1 answer
  • 3. A rock has a volume of 6 cm3 and a mass of 24g. What is the density of the rock?
    7·2 answers
  • Trigonometry Help, question posted below @AL2006
    14·1 answer
  • The speed of a light wave in a certain transparent material is 0.589 times its speed in vacuum, which is 3.00 x108 m/s. When yel
    9·1 answer
  • HELP ASAPPPPPPP !!!!
    15·1 answer
  • If you free the cork in a highly pressurized champagne bottle, the resulting launch of the cork will, in principle, cause the bo
    6·1 answer
  • Ii. Which of these has a heating element with a low melting point?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!