The train would need the greatest amount of force due to weight! If you think of it, a baseball won't need much force to stop it, but if you have a heavy train, it will need excessive force to stop the train. The answer would be #3
I hope this answer helps!
Sorry if it doesn't make sense, as I don't know that much about physics! I am just thinking of what makes sense.
Answer:
<em>The internal resistance of an ideal ammeter will be zero since it should allow current to pass through it. Voltmeter measures the potential difference, it is connected in parallel. .</em>
Explanation:
<h3>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>!</em></h3>
Translate please, i’d be able to help better:)
Answer:
W = 100000 J = 100 KJ
Explanation:
Here we will use the most basic and general formula of work, which is as follows:

where,
W = Work Done = ?
F = Force Required = 200 N
d = Length of Track = 500 m
Therefore,

<u>W = 100000 J = 100 KJ</u>
Answer:
R₁ = 50.77 Ω
Explanation:
Since, we know that:
Electric Power = P = VI
but from Ohm's Law:
V = IR
(or) I = V/R
Therefore,
P = V²/R
(OR) R = V²/P
where,
V = Battery Voltage
R = Resistance of combination
FOR SERIES COMBINATION:
R = Rs = (57 V)²/48 W
Rs = 67.69 Ω
but, we know that:
Rs = R₁ + R₂
R₁ + R₂ = 67.69 Ω
R₁ = 67.69 Ω - R₂ __________ eqn (1)
FOR PARALLEL COMBINATION:
R = Rp = (57 V)²/256 W
Rp = 12.69 Ω
but, we know that:
Rp = (R₁R₂)/(R₁ + R₂) = 12.69 Ω
using eqn (1) and value of R₁ + R₂, we get
Rp = 12.69 = R₂(67.69 - R₂)/67.69
859.08 = 67.69 R₂ - R₂²
R₂² - 67.69 R₂ + 859.08 = 0
Solving this quadratic equation we get the answers:
Either, R₂ = 50.76 Ω
Either, R₂ = 16.92 Ω
Since, it is stated in the question that R₁ > R₂. Therefore, we choose the second value. So,
<u>R₂ = 16.92 Ω</u>
using this value in eqn (1), we get:
R₁ = 67.69 Ω - 16.92 Ω
<u>R₁ = 50.77 Ω</u>