Answer: The complete reaction is as follows.

Explanation:
When nucleus of two or more atoms are bombarded together then it leads to the formation of new particles with new identity. This type of reaction are called nuclear reaction.
For example, 
Here, nitrogen atom when bombarded with a neutron then it is forming hydrogen and a carbon atom.
As total atomic mass on reactant side is (14 + 1) = 15
So, the atomic mass of carbon formed on product side is (15 - 1) = 14.
The number of protons holded by this carbon atom is (7 - 1) = 6.
Therefore, we can conclude that the complete reaction is as follows.

There are 1,000 milligrams (mg) in one gram:
In 10 grams, there are 10 x 1,000 = 10,000 milligrams. This is a lethal dose of caffeine.
There are 4.05 mg/oz (milligrams/ounce) of caffeine in the soda.
In a 12 ounce can, there are 4.05 x 12 = 48.6 milligrams.
How many sodas would it take to kill you?
To find this, we divide the lethal dose amount (10,000 mg) by the amount of caffeine per can (48.6 mg).
10,000 ÷ 48.6 = 205.76.
Since 205 cans is not quite 10,000 mg, technically it would take 206 cans of soda to consume a lethal dose of caffeine.
Answer:
the property that is shared between liquids us called thermometric property your welcome
1- Molar solutions: based on number of moles of chemical in 1 litre of solution
2- Weight % solution: the weight of chemical divided by the total weight of the solution (chemical + water) and multiplied by 100.
The compound nitrogen have most positive oxidation state is NO₂. The correct option is b.
<h3>What is oxidation state?</h3>
The total number of electrons gained or lost by an atom in order to form a chemical bond with another atom.
The charge on an ion is equal to the sum of the oxidation states of all the atoms in the ion. A substance's more electronegative elements are given a negative oxidation state.
A positive oxidation state is assigned to the less electronegative element.
Thus, the correct option is b, NO₂.
Learn more about oxidation state
brainly.com/question/11313964
#SPJ4