Answer:

Explanation:
Refractive Index: It is a measure to find how fast the light travels through a medium. It is ration of the speed of light in vacuum to speed of light in the medium. Speed of light is not constant and varies depending on the density of the medium.
In vacuum the speed of light is 300000 km/s and is denoted by c. When the light beam enters any medium the speed will decrease. Here it is given that the speed in plastic is v. Thus the refractive index(n) is given as:

It is a dimensionless no.
The answer is group 18.
Explanation:
Group 18 is known as the Noble Gases. They are the most stable elements because they have a full outer shell of valence electrons, so they have no need to bond with other elements.
Answer: 3.4s
Explanation:
There are three stages in the motion of the ball, so you have to calculate the times for every stage.
1) Ball dropping from 9.5m: free fall
d = Vo + gt² / 2
Vo = 0 ⇒ d = gt² / 2 ⇒ t² = 2d / g = 2 × 9.5 m / 9.81 m/s² = 1.94 s²
⇒ t = √ (1.94 s²) = 1.39s
2) Ball rising 5.7m (vertical rise)
i) Determine the initial speed:
Vf² = Vo² - 2gd
Vf² = 0 ⇒ Vo² = 2gd = 2 × 9.81 m/s² × 5.7m = 111.8 m²/s²
⇒ Vo = 10.6 m/s
ii) time rising
Vf = Vo - gt
Vf = 0 ⇒ Vo = gt ⇒
t = Vo / g = 10.6 m/s / 9.81 m/s² = 1.08 s
3) Ball dropping from 5.7 m to 1.20m above the pavement (free fall)
i) d = 5.7m - 1.20m = 4.5m
ii) d = gt² / 2 ⇒ t² = 2d / g = 2 × 4.5 m / 9.81 m/s² = 0.92 s²
⇒ t = √ (0.92 s²) = 0.96s
4) Total time
t = 1.39s + 1.08s + 0.96s = 3.43s ≈ 3.4s
The sun is the <em><u>source</u></em> of all the energy that moves through food. It helps the plants to grow which in turn become food that we and other animals eat.
Hope it helps :)
Answer:
The pressure of the gas will increase
Explanation:
When gas is put into a container, for example, a balloon, the gas expands to fill the space it can occupy. Since gas is not a solid or a liquid, its particles are all over the place - they are constantly moving and vibrating. As such, when too much gas is blown into a balloon, it will pop. So, when the volume of the container decreases, the pressure of the gas will increase the smaller it gets. Vice versa, the greater the space, the less pressure that will be present in the container.