Answer:
a) F = 2.66 10⁴ N, b) h = 1.55 m
Explanation:
For this fluid exercise we use that the pressure at the tap point is
Exterior
P₂ = P₀ = 1.01 105 Pa
inside
P₁ = P₀ + ρ g h
the liquid is water with a density of ρ=1000 km / m³
P₁ = 0.85 1.01 10⁵ + 1000 9.8 5
P₁ = 85850 + 49000
P₁ = 1.3485 10⁵ Pa
the net force is
ΔP = P₁- P₂
Δp = 1.3485 10⁵ - 1.01 10⁵
ΔP = 3.385 10⁴ Pa
Let's use the definition of pressure
P = Fe / A
F = P A
the area of a circle is
A = pi r² = [i d ^ 2/4
let's reduce the units to the SI system
d = 100 cm (1 m / 100 cm) = 1 m
F = 3.385 104 pi / 4 (1) ²
F = 2.66 10⁴ N
b) the height for which the pressures are in equilibrium is
P₁ = P₂
0.85 P₀ + ρ g h = P₀
h =
h =
h = 1.55 m
Answer:
The steps are outlined in the explanation below.
Explanation:
The average velocity is derived midpoint from the initial to the final velocity. Here is the proof:
Find the total displacement:
let the displacement be given by the letter s
Then since the average velocity is defined as: 
where t = final time
t₀ = initial time
v = final speed
v₀ = initial time
where x denotes the position, then

where v =
and dx = change in distance with respect to time.
<h2>Answer:</h2>
The refractive index is 1.66
<h2>Explanation:</h2>
The speed of light in a transparent medium is 0.6 times that of its speed in vacuum
.
Refractive index of medium = speed of light in vacuum / speed of light in medium
So
RI = 1/0.6 = 5/3 or 1.66
Answer:
The correct answer is D. Electrons in an atom that can bond with other atoms.
Explanation:
For those of you that need it still
250 m. for a longer explanation or solution look at this article, i’m sorry.
https://www.quora.com/A-projectile-is-thrown-so-it-travels-a-maximum-range-of-1000m-How-high-will-it-rise