The fundamental mode of vibration of a wave is defined as that which has the LOWEST frequency
Kepler's third law states that, for a planet orbiting around the Sun, the ratio between the cube of the radius of the orbit and the square of the orbital period is a constant:

(1)
where
r is the radius of the orbit
T is the period
G is the gravitational constant
M is the mass of the Sun
Let's convert the radius of the orbit (the distance between the Sun and Neptune) from AU to meters. We know that 1 AU corresponds to 150 million km, so

so the radius of the orbit is

And if we re-arrange the equation (1), we can find the orbital period of Neptune:

We can convert this value into years, to have a more meaningful number. To do that we must divide by 60 (number of seconds in 1 minute) by 60 (number of minutes in 1 hour) by 24 (number of hours in 1 day) by 365 (number of days in 1 year), and we get
Answer:
W = 1.44 10⁻⁷ J
Explanation:
The expression for the job is
W = ∫ F. dx
Where the point is the scalar product in this case the direction of the meteor and the depth is parallel, whereby the scalar product is reduced to the ordinary product
W = 630 ∫ x³ dx
W = 630 x⁴ / 4
Let's evaluate between the lower limit x = 0, w = 0 to the upper limite the point at x = 5.5 10⁻³ m
W = 157.5 ((5.5 10⁻³)⁴ -0)
W = 1.44 10⁻⁷ J
Answer:53.3m/s
Explanation:
time for first travel
time=distance/speed
time=40/80
time=0.5seconds
time for second travel:
time=distance/speed
time=40/40
time=1seconds
total time=0.5+1
total time=1.5seconds
Then average speed for 80km trip:
Speed=distance/time
Speed=80/1.5
Speed=53.3m/s
Answer:
(a) 
(b) 
(c)
(d)
Solution:
As per the question:
Refractive index of medium 1, 
Angle of refraction for medium 1, 
Angle of refraction for medium 2, 
Now,
(a) The expression for the refractive index of medium 2 is given by using Snell's law:

where
= Refractive Index of medium 2
Now,

(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:


(c) To calculate the velocity of light in medium 1:
We know that:
Thus for medium 1
(d) To calculate the velocity of light in medium 2:
For medium 2: