Answer:
All points to the left of zero are negative
Explanation:
Answer:
V = 156.13 [cm³]
Explanation:
El volumen de un solido con forma de paralepipedo se puede calcular por medio de la siguiente formula:

donde:
V = volumen [cm³]
ancho = 3.4 [cm]
largo = 11.2 [cm]
alto = 4.1 [cm]
Ahora reemplazando.
![V = 3.4*11.2*4.1\\V = 156.13 [cm^{3}]](https://tex.z-dn.net/?f=V%20%3D%203.4%2A11.2%2A4.1%5C%5CV%20%3D%20156.13%20%5Bcm%5E%7B3%7D%5D)
Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
The second law of thermodynamics establishes restrictions on the flow of thermal energy between two bodies. This law states that the energy does not flow spontaneously from a low temperature object T1, to another object that is at a high temperature T2.
For example. Suppose you place your cell phone on the table. Your phone is at a temperature of 40 ° C and the table is at 19 ° C. Then, it is impossible for the table to spontaneously transfer its thermal energy to the telephone, and so that the table gets colder and the telephone warmer.
Finally we can say that the correct option is B: From the hotter object to the cooler object
Rainbows are caused by the dispersion of light, which itself consists of a combination of refraction and reflection of light around little droplets of water.
Choice C