<h2>9. Given : P + O2 = P2O5</h2>
Balanced Chemical Equation: <u>4</u>P + <u>5</u>O2 = <u>2</u>P2O5
<u>Reactant Product</u>
P = (1) 4 | P = (2) 4
O = (2) 10 | O = (5) 10
Reaction Information
Phosphorus + Dioxygen = <u>Phosphorus Pentoxide</u>
Reaction Type: <u>Synthesis</u>
<h2>
10. Given: HCl + NaOH = NaCl + H2O </h2>
<u>Reactant Product</u>
H = 2 | H = 2
Cl = 1 | Cl = 1
Na = 1 | Na = 1
O = 1 | O = 1
<h3>
Chemical Equation is already in balance.</h3>
Reaction Information<em>:</em><em> </em><em>Hydrogen Chloride </em>+ <em>Sodium Hydroxide</em> = <em>Sodium Chloride </em>+ <em>Water</em>
Reaction Type<u> </u><u>:</u><u> </u><u>Double Displacement (Acid-Base)</u>
<h3>For more info:</h3>
<u>How to balance chemical equation?</u>
brainly.com/question/15939935
The first law of thermodynamics states the conservation of energy and heat where the <span>total energy in an isolated system may be transformed into another, but never created or destroyed. If 314 J of energy was released to the room, then also 314 J of energy was also removed from food in that refrigerator assuming it is an isolated system. </span>
Answer:
pH = 10.9
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to say that the undergoing reaction between this buffer and OH⁻ promotes the formation of more CO₃²⁻ because it acts as the base, we can do the following:

The resulting concentrations are:
![[CO_3^{2-}]=\frac{0.1435mol}{0.25L}=0.574M \\](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B0.1435mol%7D%7B0.25L%7D%3D0.574M%20%5C%5C)
![[HCO_3^{-}]=\frac{0.0265mol}{0.25L}=0.106M](https://tex.z-dn.net/?f=%5BHCO_3%5E%7B-%7D%5D%3D%5Cfrac%7B0.0265mol%7D%7B0.25L%7D%3D0.106M)
Thus, since the pKa of this buffer system is 10.2, the change in the pH would be:

Which makes sense since basic OH⁻ ions were added.
Regards!
Answer:
1.087 mi/min
Explanation:
Given data:
Speed of car in Km/h = 105
Speed of car in miles/min = ?
Solution:
It is given that one miles = 1.61 Km
while it is known that one hour = 60 minutes
Thus in order to convert the km/h into mi/min we will divide the given value by 96.561.
105 / 96.561
1.087 mi/min