Answer: Option (c) is the correct answer.
Explanation:
Backbone in a nucleic acids strand is made up of sugar molecules attached with phosphodiester bond.
This sugar-phosphate linkage helps in joining of nucleotides in a DNA sequence. Due to this backbone structural framework of nucleotides is formed. In DNA, the sugar is deoxyribose.
Thus, we can conclude that the backbone in a nucleic acids strand is called sugar backbone.
Answer:
10 g/ml
Explanation:
divide mass by volume means divide 1000 by 100 and your answer will be 10
1.50x10^6 m2 is the answer you're looking for
<h2>The isotopes of an element all have the same __(atomic, mass) __number, but they have different __(atomic,mass)__numbers.</h2>
Explanation:
The isotopes of an element all have the same __atomic number __, but they have different __mass __numbers.
The isotopes have same atomic number that is :
- Same number of electrons
- Same number of protons
- same electronic configuration
- same valence electrons
- same valency
- same symbol
The isotopes have different mass number that is :
They differ in number of neutrons .
For example : Isotopes of hydrogen are : H₁¹ , H₁² , H₁³
isotopes of Oxygen is : O¹⁶ , O¹⁷, O¹⁸
Answer:
The mass of the element is 141.03701 amu
Explanation:
The catch here is that it notes a " newly found element. " Otherwise you could just refer to the average atomic mass of the element in the periodic table, and receive your solution in a much faster way.
The first isotope has an atomic mass of 139.905 amu, and a respective percent abundance of 37.25%. The second isotope has an atomic mass of 141.709 amu, and the remaining percent abundance, 100% - 37.25% = 62.75% ( given ). We can calculate the mass of the unknown element by associating each percentage with the mass of their respective isotope, over 100%.
Mass = ( ( 139.905 amu )( 37.25% ) + ( 141.709 amu )( 62.75% ) )/ 100,
Mass = ( ( 5211.46125 ) + ( 8892.23975 ) ) / 100,
Mass = ( 14103.701 ) / 100 = 141.03701 amu