1. BC/CD = AC/CE 1. Given
2. <BCA is congruent to <ECD 2. Vertical angles are congruent
3. Tr.ACB is congr to Tr.ECD 3. SAS Similarity
Answer:

Step-by-step explanation:
Forma ordinaria
La ecuación de la parabola de manera ordinaria está dada por:
(1)
Donde:
- (h,k) es la coordenda del vértice, en nuestro caso (0,0) ya que está en el origen.
- (h,k+p) es la coordenda del foco, en nuestro caso (0,1).
Por lo tanto h = 0, k = 0 y p = 1.
Remplazando estos valores en la ecuación de la parábola, tenemos:

(2)
Forma general
La forma general de una parábola esta dada por la siquiente ecuación

Reordenando la ecuación (2) tenemos:

Espero esto te haya ayudado!
Symmetry is the same as the one side of the graph but it is fliped on the X-axis
Answer:
DESPERATE PLEASE ANSWER FAST
(please show picture)
Use the data to create a scatter plot.
Savings Account Balance for a Given Year
PointMove
UndoRedoReset
Time (years)Savings account balance ($)
1
2
3
4
5
6
7
8
9
10
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
0
Time (years)
Savings account balance ($)
1
1300
2
2500
3
3600
4
4000
5
2200
6
1800
7
3200
8
9000
Step-by-step explanation:
DESPERATE PLEASE ANSWER FAST
(please show picture)
Use the data to create a scatter plot.
Savings Account Balance for a Given Year
PointMove
UndoRedoReset
Time (years)Savings account balance ($)
1
2
3
4
5
6
7
8
9
10
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
0
Time (years)
Savings account balance ($)
1
1300
2
2500
3
3600
4
4000
5
2200
6
1800
7
3200
8
9000
Answer:
C. 54π + 20.25√3 cm²
Step-by-step explanation:
The shaded area can be split into two areas: a sector and an isosceles triangle.
Area of a sector is:
A = (θ/360°) πr²
where θ is the central angle and r is the radius.
Area of an isosceles triangle can be found with SAS formula:
A = ½ ab sin θ
where a and b are two sides of a triangle and θ is the angle between them.
In this case, r = a = b = 9 cm. The central angle of the sector is 240°, and the vertex angle of the triangle is 120°. Therefore, the total area is:
A = (240°/360°) π (9 cm)² + ½ (9 cm) (9 cm) sin 120°
A = 54π + 20.25√3 cm²