Answer:
312 g of O₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KClO₃ —> 2KCl + 3O₂
From the balanced equation above,
2 mole of KClO₃ decomposed to 3 moles of O₂.
Next, we shall determine the number of mole of O₂ produced by the reaction of 6.5 moles of KClO₃. This can be obtained as follow:
From the balanced equation above,
2 mole of KClO₃ decomposed to 3 moles of O₂.
Therefore, 6.5 moles of KClO₃ will decompose to produce = (6.5 × 3)/2 = 9.75 moles of O₂.
Finally, we shall determine the mass of 9.75 moles of O₂. This can be obtained as follow:
Mole of O₂ = 9.75 moles
Molar mass of O₂ = 2 × 16 = 32 g/mol
Mass of O₂ =?
Mole = mass / Molar mass
9.75 = Mass of O₂ / 32
Cross multiply
Mass of O₂ = 9.75 × 32
Mass of O₂ = 312 g
Thus, 312 g of O₂ were obtained from the reaction.
Primary:
Grasshopper
Mouse
Grass
Secondary:
Hawk
Snake
Coyote
Answer:
ΔH rxn = -1010 kJ/molC₂H₂
Explanation:
To obtain the enthalpy change for a reaction from bond energies what we do is to make an inventory of the bonds broken and formed for the balanced chemical reaction:
C₂H₂ + 5/2O₂ ⇒ 2CO₂ + H₂O
Bond Broken Bonds Formed
2 C-H + 1 C≡C + 5/2 O=O 4C=O + 2 H-O
Enthalpy bonds broken:
2 mol (456 kJ/mol)+ 1 mol (962 kJ/mol) + 5/2 mol (499 kJ/mol) = 3121.5 kJ
Enthalpy bond formed:
4 mol (802 kJ/mol) + 2 mol (462 kJ/mol) = 4132.0 kJ
ΔH rxn = H broken - H formed = 3121.5 kJ - 4132.0 kJ = - 1010 kJ (per mol C₂H₂ )
Answer:
the answer is v and z. you can see the pic