I think the correct answer would be the third option. The correct name for the hydrocarbon described above would be 2-heptyne. It has a chemical formula written as CH3 - CH2 - CH2 - CH2 - C ≡ C - CH3. Counting the number of carbons, we have 7 carbon atoms so we use the prefix hepta-. Since it has a triple bond then it is an alkyne. So, it would be named as heptyne. The triple bond is located on the second carbon atom so we write 2 before the name to indicate the location of the triple bond. The name of the compound would be 2-heptyne.
Answer:
1.88 × 10²² Molecules of CO
Explanation:
At STP for an ideal gas,
Volume = Mole × 22.4 L/mol
Or,
Mole = Volume / 22.4 L/mol
Mole = 0.7 L / 22.4 L/mol
Mole = 0.03125 moles
Now,
No. of Molecules = Moles × 6.022 × 10²³ Molecules/mol
No. of Molecules = 0.03125 × 6.022 × 10²³ Molecules/mol
No. of Molecules = 1.88 × 10²² Molecules of CO
You can determine it by paying attention to the unique characteristics that could only be found at heart's tissue, such as :
- looks striated or stripped
- The bundles are breached like tree but connected at both ends
hope this helps
The answer is motion, this is what I would go with because when you are dealing with gases it puts motion in the term of particles.