Look at your speedometer for say, a couple of seconds. Depends on whether or not you are moving on average at a constant speed (speedo won't change much) or whether you're in a polluting traffic jam/queue in which case the speedo will go up and down like a yo yo. to determine the speed, you'd probably need to plot the speed on the speedo against the times at which the speedo speeds were read from the speedo.
1. Ask a question
2. Form a hypothesis
3. Experiment
4.Record data
5.Draw Conclusion
6. Share Results
The answer to this question is A - 25 N
Explanation:
Solution:
Let the time be
t1=35min = 0.58min
t2=10min=0.166min
t3=45min= 0.75min
t4=35min= 0.58min
let the velocities be
v1=100km/h
v2=55km/h
v3=35km/h
a. Determine the average speed for the trip. km/h
first we have to solve for the distance
S=s1+s2+s3
S= v1t1+v2t2+v3t3
S= 100*0.58+55*0.166+35*0.75
S=58+9.13+26.25
S=93.38km
V=S/t1+t2+t3+t4
V=93.38/0.58+0.166+0.75+0.58
V=93.38/2.076
V=44.98km/h
b. the distance is 93.38km
this is the sample Answer: Spring tides occur when the moon is full or new. Earth, the moon, and the Sun are in a line. The moon’s gravity and the Sun’s gravity pull Earth’s crust and ocean water. This causes tides to be higher than normal.
At neap tide, the moon and the Sun are at right angles to each other. This happens during the first and third quarters of the lunar cycle. At neap tide, the Sun’s gravity and the moon’s gravity are balanced. High tides are lower; low tides are higher.
Explanation:
just did the assament