Answer:
Explanation:
Yes she is doing work. With or without the groceries, she is still doing work. She does more work with the groceries than without because Work is defined by F which is defined by mass. The mass increases with the groceries.
The work done is against the force of gravity.
To solve this problem we will use the relationship given between the centripetal Force and the Force caused by the weight, with respect to the horizontal and vertical components of the total tension given.
The tension in the vertical plane will be equivalent to the centripetal force therefore

Here,
m = mass
v = Velocity
r = Radius
The tension in the horizontal plane will be subject to the action of the weight, therefore

Matching both expressions with respect to the tension we will have to


Then we have that,


Rearranging to find the velocity we have that

The value of the angle is 14.5°, the acceleration (g) is 9.8m/s^2 and the radius is



Replacing we have that


Therefore the speed of each seat is 4.492m/s
The correct answer is the third one: move toward the ground state. Remember please that Elements produce their spectrum when their electrons move toward the ground state. Hope this is very useful
Water<span> can </span>dissolve salt<span> because the positive part of </span>water<span> molecules attracts the negative chloride ions and the negative part of </span>water<span> molecules attracts the positive sodium ions. The amount of a substance that can </span>dissolve<span> in a liquid (at a particular temperature) is called the solubility of the substance. So the solute is the salt and the solvent is the water. I believe that is correct.</span>
Answer:
The height of the hill is 0.46 m.
Explanation:
Given;
mass of the child and sled, m = 50 kg
initial velocity of the sled, u = 0
final velocity of the sled, v = 3 m/s
The height of the high is calculated from the law of conservation of energy;
P.E at top = K.E at bottom
mgh = ¹/₂mv²
gh = ¹/₂v²

Therefore, the height of the hill is 0.46 m.