<u>Given:</u>
Mass of Ag = 1.67 g
Mass of Cl = 2.21 g
Heat evolved = 1.96 kJ
<u>To determine:</u>
The enthalpy of formation of AgCl(s)
<u>Explanation:</u>
The reaction is:
2Ag(s) + Cl2(g) → 2AgCl(s)
Calculate the moles of Ag and Cl from the given masses
Atomic mass of Ag = 108 g/mol
# moles of Ag = 1.67/108 = 0.0155 moles
Atomic mass of Cl = 35 g/mol
# moles of Cl = 2.21/35 = 0.0631 moles
Since moles of Ag << moles of Cl, silver is the limiting reagent.
Based on reaction stoichiometry: # moles of AgCl formed = 0.0155 moles
Enthalpy of formation of AgCl = 1.96 kJ/0.0155 moles = 126.5 kJ/mol
Ans: Formation enthalpy = 126.5 kJ/mol
Answer:
(a) The rate of formation of K2O is 0.12 M/s.
The rate of formation of N2 is also 0.12 M/s
(b) The rate of decomposition of KNO3 is 0.24 M/s
Explanation:
(a) From the equation of reaction, the mole ratio of K2O to O2 is 2:5.
Rate of formation of O2 is 0.3 M/s
Therefore, rate of formation of K2O = (2×0.3/5) = 0.12 M/s
Also from the equation of reaction, mole ratio of N2 to O2 is 2:5.
Rate of formation of N2 = (2×0.3/5) = 0.12 M/s
(b) From the equation of reaction, mole ratio of KNO3 to O2 is 4:5.
Therefore, rate of decomposition of KNO3 = (4×0.3/5) = 0.24 M/s
Answer:
cant read the questions...
Explanation: