Answer:
The mass percent of potassium is 39%
Option C is correct
Explanation:
Step 1: Data given
Atomic mass of K = 39.10 g/mol
Atomic mass of H = 1.01 g/mol
Atomic mass of C = 12.01 g/mol
Atomic mass of O = 16.0 g/mol
Step 2: Calculate molar mass of KHCO3
Molar mass KHCO3 = 39.10 + 12.01 + 1.01 + 3*16.0
Molar mass KHCO3 = 100.12 g/mol
Step 3: Calculate mass percent of potassium (K)
%K = (atomic mass of K / molar mass of KHCO3) * 100%
%K = (39.10 / 100.12) * 100%
%K = 39.05 %
The mass percent of potassium is 39%
Option C is correct
I recently wrote a paper on animal testing
Pretty sure it was Galen
<span> The atomic number increases by one and the element becomes a different element. </span>
Answer:
mass of U-235 = 15.9 g (3 sig. figures)
Explanation:
1 atom can produce -------------------------> 3.20 x 10^-11 J energy
x atoms can produce ----------------------> 1.30 x 10^12 J energy
x = 1.30 x 10^12 / 3.20 x 10^-11
x = 4.06 x 10^22 atoms
1 mol ----------------------> 6.023 x 10^23 atoms
y mol ----------------------> 4.06 x 10^22 atoms
y = 0.0675 moles
mass of U-235 = 0.0675 x 235 = 15.8625
mass of U-235 = 15.9 g (3 sig. figures)
It depends on what type of graph you have. The easiest would be using a H-T diagram. Enthalpy of vaporization is the physical change from liquid to vapor. It occurs at a constant pressure and a constant temperature. As shown in the picture, 1 point is drawn on the subcooled liquid, and another point of the saturated vapor isothermal line. Now, the difference between those two points is the value for the enthalpy of vaporization of water.