Answer:
The value of smaller resistor is 248 Ω.
Explanation:
Voltage divider circuit is used to convert a higher voltage to a smaller voltage with the help of resistors which are connected in parallel.
As shown in the circuit, Vs is the source voltage, R₁ and R₂ are the two resistors and V₀ is the output voltage.
Applying KVL in the circuit, the output voltage is given by :
According to the problem, R₂ = 310Ω , V₀ = 5 V and Vs = 9 V. Substitute these values in the above equation.
R₁ = 248Ω
Answer:
the focal length of the mirror is :
Explanation:
Use the formula for the formation of image using a divergent mirror and recalling that the image (s') that this mirror formed is virtual, so it is entered as a negative number in the formula. Use the object position (s) as 10, the image position (s') as -2, and derive the value of the focal length:
d. Maintain constant velocity
Explanation:
A constant velocity leads to no acceleration.
Acceleration is defined as the change in velocity with time:
Acceleration =
If there is no change in velocity i.e constant velocity.
At constant velocity, the change in velocity is 0.
If we put zero in the equation above, we will obtain an acceleration value of 0.
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
The brightness of the lamp is proportional to the current flowing through the lamp: the larger the current, the brighter the lamp.
The current flowing through the lamp is given by Ohm's law:
where
V is the potential difference across the lamp, which is equal to the emf of the battery, and R is the resistance of the lamp.
The problem says that the battery is replaced with one with lower emf. Looking at the formula, this means that V decreases: if we want to keep the same brightness, we need to keep I constant, therefore we need to decrease R, the resistance of the lamp.
1 watt = 1 joule per sec
11,000 Watts = 11,000 joules per sec
The frequency doesn't matter.