a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s .The amplitude of the subsequent oscillations 48.13 cm/s
a 1.25 kilogram block is fastened to a spring with a 17.0 newtons per meter spring constant. Given that K is equal to 14 Newtons per meter and mass equals 10.5 kg. The block is then struck with a hammer by a student while it is at rest, giving it a speedo of 46.0 cm for a brief period of time. The required energy provided by the hammer, which is half mv squared, is transformed into potential energy as a result of the succeeding oscillations. This is because we know that energy is still available for consultation. So access the amplitude here from here. He will therefore be equal to and by. Consequently, the Newton's spring constant is 14 and the value is 10.5. The velocity multiplied by 0.49
Speed at X equals 0.35 into amplitude, or vice versa. At this point, the spirit will equal half of K X 1 squared plus half. Due to the fact that this is the overall energy, square is equivalent to half of a K square or an angry square. amplitude is 13 and half case 14 x one is 0.35. calculate that is equal to initial velocities of 49 squares and masses of 10.5. This will be divided in half and start at about 10.5 into the 49-square-minus-14. 13.42 into the entire square in 20.35. dividing by 10.5 and taking the square as a result. 231 6.9 Six centimeters per square second. 10.5 into 49 sq. 14. 2 into a 13.42 square entire. then subtract 10.5 from the result to get the square. So that is 48.13cm/s.
To learn more about oscillations Please click on the given link:
brainly.com/question/26146375
#SPJ4
This is incomplete question Complete Question is:
a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s . what are The amplitude of the subsequent oscillations?
Answer:
The windowpanes are- transparent.
The color of the panes are due to the wavelengths of light that the glass- allows to pass through
Explanation:
Just answered the question.
Answer:
<em>The period of the motion will still be equal to T.</em>
<em></em>
Explanation:
for a system with mass = M
attached to a massless spring.
If the system is set in motion with an amplitude (distance from equilibrium position) A
and has period T
The equation for the period T is given as

where k is the spring constant
If the amplitude is doubled, the distance from equilibrium position to the displacement is doubled.
Increasing the amplitude also increases the restoring force. An increase in the restoring force means the mass is now accelerated to cover more distance in the same period, so the restoring force cancels the effect of the increase in amplitude. Hence, <em>increasing the amplitude has no effect on the period of the mass and spring system.</em>
Option c) 1.5 V
Explanation:
<em>As the circuit is build in series first we will find the current passing through the complete circuit. Current stays the same in each element is the series cirucuit, however, the voltage is different.</em>
Voltage is given by the following formula:
V = IR
<em>Because we have to find current through whole circuit, we will first find resistance of the whole circuit.</em>
Equivalent Resistance R(eq): R1 + R2 = 60 + 60 = 120 ohm
Current passing through whole circuit be:
= 0.025
Now we will find out the voltage between C and D:
Current stays the same in series circuit: I = 0.025 c
Resistance between C and D is, R = 60 ohm
Voltage becomes, V = IR = 0.025 * 60 = 1.5 V