Power = 1800W (or 1.8KW by dividing by 1000)
Time = 3 hours
Power = energy/ time
1.8KW = energy/ 3
x3
5.4Kw/h= energy
(5.4KJ or 5400J used)
$0.15 Kw/h
$0.15 X 5.4 = 0.81
Thus, cost $0.81
Hope this helps!
As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
1.) C
2.) B
3.) D
4.) B
Good luck with your work!
For you to answer a question on graphs, you have to first, identify the variables and coefficients given in the problem. Then, assess the Problem what is required given the <span>variables and coefficients. Lastly, develop a solution that would answer the required variables in the problem.</span>
Answer:
<h3>
2.3125m/s²</h3>
Explanation:
Using the equation of motion v² = u²+2aS
v is the final velocity = 120km/hr
120km/hr = 120 * 1000/1 * 3600 = 33.3m/s
u is the initial velocity = 0m/s
a is the acceleration
S is the distance covered = 240m
On substituting the given parameters
33.3² = 0²+2a(240)
33.3² = 480a
1110 = 480a
a = 1110/480
a = 2.3125m/s²
Hence the minimum constant acceleration that the aircraft require to be airborne after a takeoff run of 240 m is 2.3125m/s²