Answer:
William Ferrel created a tide-prediction machine.
Explanation:
- William Ferrel create a machine in late 19th century that was the best combination of mechanical parts and computer coding.
- It was a mechanical analog computer that could predict the ebb of tides and even the height of tides that could be irregular.
- It was widely used for marine networks and navigation. Later on many improvisations and additional features were added on it.
- During the world war times, this tide prediction machine was of great use for military purpose.
To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,

Here,
v = Velocity
= Linear density (Mass per unit length)
T = Tension
Rearranging to find the Period we have that


As we know that speed is equivalent to displacement in a unit of time, we will have to



Therefore the tension is 5.54N
Answer:
Option d is correct.
Explanation:
We know , resistance of a body is directly proportional to its length and inversely proportional to its area.
( Here,
is constant dependent on object material )
Writing
also :
( since they are of same material therefore,
is same.)
Now , if
.
Then 
Therefore, option d. is correct.
Hence, this is the required solution.
Answer:
5
Explanation:
The d subshell has 5 orbitals, each capable of holding a maximum of two electrons. Hund's rule tells us that every orbital in a sub-level must first be singly occupied by electrons before any orbital is doubly occupied. Therefore five electrons will fill the five orbitals within the d subshell.