If he is jumping you are adding force which means that you will be falling twice as fast
Answer:

Explanation:
Speed experimented by the ball before and after collision are determined by using Principle of Energy Conservation:
Before collision:


After collision:


The magnitude of the impulse delivered to the ball by the floor is calculated by the Impulse Theorem:
![Imp = (0.32\,kg)\cdot [(17.153\,\frac{m}{s} )-(-19.304\,\frac{m}{s} )]](https://tex.z-dn.net/?f=Imp%20%3D%20%280.32%5C%2Ckg%29%5Ccdot%20%5B%2817.153%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29-%28-19.304%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5D)

Answer:
The amplitude of the eardrum's oscillation is 6.65×10^-13 m.
Explanation:
Given data:
The sound has a frequency of 262 Hz
The sound level is 84 dB
The air density is 1.21 kg/m^3
The speed of sound is 346 m/s
Solution:
As, Intensity of sound is given by,
I = Io×10^(s/10 db)
I = 2×π^2×ρ×v×f^2×Sm^2
Thus,
Sm = √(Io×10^(s/10 db)) / √( 2×π^2×ρ×v×f^2)
Now, put the values,
Sm = √( 10^-12 × 10^(84/10) ) / √( 2×(3.14)^2×1.21×346×(262)^2 )
Sm = √(2.51×10^-4 / 5.66×10^8)
Sm = √0.443×10^-12
Sm = 6.65×10^-13 m.
Answer:
frequency of a wave can be measured by the number of crests in a second or more