Answer: M = 1797.75 kg
Explanation:
given parameters are;
speed V = 26.7 M/S.
momentum P = 4.8×10^4 KGM/S.
What was the mass of the V. A-3?
Momentum P is the product of mass and velocity. That is, P = MV
Substitute V and P into the formula
4.8×10^4 = 26.7 × M
Make M the subject of formula
M = 4.8×10^4/ 26.7
M = 1797.75 kg
Therefore, the mass of the V. A-3 was 1797.75 kg
1.Landslide 2. Delta 3. Moving water 4. Erosion 5. Abrasion and Deflation
6. Winds 8. Sediment it can erode
Sorry, don't know 7.
Answer:
Magnitude of vector A = 0.904
Explanation:
Vector A , which is directed along an x axis, that is

Vector B , which has a magnitude of 5.5 m


The sum is a third vector that is directed along the y axis, with a magnitude that is 6.0 times that of vector A 
Comparing we will get

Substituting in 

So we have

Magnitude of vector A = 0.904
Answer:
ms⁻¹
Explanation:
= diameter of merry-go-round = 4 m
= radius of merry-go-round =
=
= 2 m
= moment of inertia = 500 kgm²
= angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
= angular velocity of merry-go-round after ryan jumps = 0 rad/s
= velocity of ryan before jumping onto the merry-go-round
= mass of ryan = 70 kg
Using conservation of angular momentum



ms⁻¹