Answer:
When C1 is labeled in glucose, it ends up in the methyl group of pyruvate.
Aldolase cleaves a hexose into two trioses.
[See the image attached].
Asterisk indicates the label.
When C1 is labeled in glucose, it ends up in the carboxyl group of pyruvate.
Answer:
Covalent bond.
Explanation:
There are two kinds of chemical bonds: covalent bonds and ionic bonds.
- A covalent bond is formed when two atoms share a pair of electrons (two electrons for each bond.)
- Ions are formed when one atom transfers an electron to another. Ionic bonds refer to the attraction between ions of opposite electric charges.
In this example, since the atoms are sharing atoms, the chemical bond between them would be a covalent bond.
<span>There is only one formula to use and we should assume ideal gas. This equation is: PV=nRT. For the following questions manipulate this equation to get the answer.
1. n = PV/RT = (249*1000 Pa)(15.6 L)(1 m^3/1000 L)/(8.314 Pa-m^3/mol-K))(21+273) = 1.59 mol
2. P = nRT/V = (1.59)(8.314)(51+273)/(15.6/1000)(1000) = 274.55 kPa
3. Since the answer in #2 is more than 269 kPa, then the tires will likely burst.
4. Reduce pressure way below the limit 269 kPa.</span>
Answer:
It takes 5.83s to decrease the concentration of the reactant from 0.537M to 0.100M
Explanation:
A zero-order reaction follows the equation:
[A] = [A]₀ - kt
<em>Where [A] is actual reaction of the reactant = 0.100M</em>
<em>[A]₀ the initial concentration = 0.537M</em>
<em>k is rate constant = 0.075Ms⁻¹</em>
<em>And t is time it takes:</em>
<em />
0.100M = 0.537M -0.075Ms⁻¹t
-0.437M = -0.075Ms⁻¹t
5.83s = t
It takes 5.83s to decrease the concentration of the reactant from 0.537M to 0.100M
Answer:
3,density
Explanation:
because it doesn't measure dirrectly