Answer : The correct option is, (d) 4 times
Solution :
According to the Coulomb's law, the electrostatic force of attraction or repulsion between two charges is directly proportional to the product of the charges and is inversely proportional to the square of the distance between the the charges.
Formula used :

where,
F = electrostatic force of attraction or repulsion
= Coulomb's constant
and
are the charges
r = distance between two charges
First we have to calculate the force exerted between S and q when the distance between the charge is 1 unit and let us assumed that the charge be 'q'
..........(1)
Now we have to calculate the force exerted between S and p when the distance between the charge is 2 unit at the same charge.
...........(2)
Equation equation 1 and 2, we get


Therefore, the force exerted between S and q is 4 times the force exerted between S and p.
Answer:
False
Explanation:
The net force is equal to the applied force minus the force of friction. It is possible for friction to act in the same direction as an applied force, but that would mean there would have to be more than two forces acting on the object.
No, as long as nothing moves you aren't doing work, since W=F.s. You have no s, so no W