30km. 24 the first two hours and 6 the half hour
Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.
Answer:
3/7 ω
Explanation:
Initial momentum = final momentum
I(-ω) + (2I)(3ω) + (4I)(-ω/2) = (I + 2I + 4I) ωnet
-Iω + 6Iω - 2Iω = 7I ωnet
3Iω = 7I ωnet
ωnet = 3/7 ω
The final angular velocity will be 3/7 ω counterclockwise.
Answer:
Explanation:
Given
radius of circle=1.4 m
Height of stone above ground=1.5 m
Horizontal distance(R)=10 m
It is given at the time of break stone flies horizontally thus stone to cover a height of 1.5 m in time t before reaching ground
t=0.55 s
Initial horizontal velocity at the time of break is given by u
u=18.07 m/s
Therefore magnitude of centripetal acceleration is given by
Answer:
7229 N
Explanation:
The gravitational force between the Death Star and the Millenium Falcon is given by:
where
is the gravitational constant
is the mass of the Death Star
is the mass of the Millennium Falcon
is the radius of the Death Star
Substituting numbers into the equation, we find the force