R=ut+gt^2/2
r- displacement (height to find)
u - initial speed (zero)
t - time taken
r=0*5.8 + 10*5.8^2 /2 = 168.2 meters
Answer:
(a).The speed of the water in the nozzle is 3.014 m/s.
(b). The pressure in the nozzle is 1.86 atm.
Explanation:
Given that,
Nozzle diameter = 0.25 in = 0.00635 m
Hose pipe diameter = 0.64 in = 0.016256 m
Pressure = 1.9 atm =192518 Pa
(a). We need to calculate the speed of the water in the nozzle
Flow Speed at the inlet pipe will be given by using Continuity Equation



Where, A = area of pipe


Put the value into the formula


The speed of the water in the nozzle is 3.014 m/s.
(b). We need to calculate the pressure in the nozzle
Using Bernoulli's Theorem,

Where, 


Put the value into the formula



Hence, (a).The speed of the water in the nozzle is 3.014 m/s.
(b). The pressure in the nozzle is 1.86 atm.
Answer:
1) joule
2) 
3) 
Explanation:
1) Luminosity is the <u>amount of light emitted</u> (measured in Joule) by an object in a unit of<u> time</u> (measured in seconds). Hence in SI units luminosity is expressed as joules per second (
), which is equal to Watts (
).
This amount of light emitted is also called radiated electromagnetic power, and when this is measured in relation with time, the result is also called radiant power emitted by a light-emitting object.
Therefore, if we want to calculate luminosity the Joule as a unit will be used.
2) Work
is expressed as force
multiplied by the distane
:
Where force has units of
and distance units of
.
If we input the units we will have:
This is 1Joule (
) in the SI system, which is also equal to 
3) The formula to calculate the percent error is:

Where:
is the experimental value
is the accepted value

This is the percent error
a.
The work done by a constant force along a rectilinear motion when the force and the displacement vector are not colinear is given by:

where F is the magnitude of the force, theta is the angle between them and d is the distance.
The problen gives the following data:
The magnitude of the force 750 N.
The angle between the force and the displacement which is 25°
The distance, 26 m.
Plugging this in the formula we have:

Therefore the work done is 17673 J.
b)
The power is given by:

the problem states that the time it takes is 6 s. Then:

Therefore the power is 2945.5 W
PART a)
As we know that gravitational potential energy is given by the formula

here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance