Answer:
the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
Explanation:
Following Newton's second law:
net force = mass * acceleration = weight/gravity * acceleration
then denoting 1 and 2 as the first and second lift
F₁ - w= w/g *a₁
F₂ -w = w/g *a₂ = w/g * 2.07a
dividing both equations
(F₂- w)/(F₁ -w)= 2.07
(F₂- w) = 2.07 * (F₁ -w)
1.07*w = 2.07*F₁ - F₂
w = (2.07*F₁ - F₂ )/ 1.07
replacing values
w = (2.07*61.1 N - 70.9 N )/ 1.07 = 51.94 N
then the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
The potential energy will be 1.46*10^-4J.
To find the answer, we have to know about the torque acting on a current loop in a uniform magnetic field.
<h3>How to find the potential energy of the loop?</h3>
- We have the expression for torque acting on a current loop in a uniform magnetic field as,

where; M is the magnetic dipole moment, B is the magnetic field , and theta is the angle between M and B.
- As we know that, the torque is equal to force times the perpendicular distance. Thus, it is equivalent to the work done. This work is stored as the potential energy in the loop.
- Thus, the potential energy will be,

Thus, we can conclude that, the potential energy will be 1.46*10^-4J.
Learn more about the torque here:
brainly.com/question/27949876
#SPJ4
Answer:
Explanation:
Given

angular velocity 
Combined moment of inertia of stool,student and bricks 
Now student pull off his hands so as to increase its speed to suppose
rev/s
After Pulling off hands so final moment of inertia is

Conserving angular momentum as no external torque is applied




Mostly gravity voloume and sometimes what it is made of