14. is a and i think 15. is b
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:
Moles of HI = 0.550 moles
Volume of container = 2.00 L
For the given chemical equation:
<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of for above equation follows:
We are given:
Putting values in above expression, we get:
Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
Answer:
loooooooooooooooooooooooooolzzzz
Explanation:
Answer:
Noble gases are a unique set of elements in the periodic table because they don't naturally bond with other elements.
Explanation:
HAVE A GOOD DAY!
Answer: option (1) an electron.
Justification:
1) The plum pudding model of the atom conceived by the scientist J.J. Thompson, described the atom as a solid sphere positively charged with the electrons (particles negatively charged) embedded.
2) The next model of the atom, developed by the scientist Ernest Rutherford, depicted the atom a mostly empty space with a small dense positively charged nucleous and the electrons surrounding it.
3) Then, Niels Bhor came out with the model of electrons in fixed orbits around the nucleous, just like the planets orbit the Sun. So, the path followed by the electrons were orbits.
4) The quantum model of the atom did not place the electrons in fixed orbits around the nucleous but in regions around the nucleous. Those regions were named orbitals. And they are regions were it is most probable to find the electron, since it is not possible to tell the exact position of an electron.
As per this model, the electron has a wave function associated. The scientist Schrodinger developed the wave equation which predicts the location of the electron as a probability.
The orbitals are those regions were it is most likely to find the electron. Those regions are thought as clouds of electrons.