Answer:
Explanation:According to the law of conservation of mass (mass remains the same throughout a reaction), mass is conserved in this case. This can be proven by comparing the weight of two enclosed glass containers of the reaction. They will most likely have the same weight because the products the chemical reaction creates would most likely produce a gas that can be trapped if there is no opening in the glass container. To further investigate, compare the weights of the products of the reaction with an enclosed container to another container with no lid of the same reaction.
Answer:
The reaction D has the value of ΔH°rxn equal to ΔH°f for the product.
Explanation:
The ΔH°f for product is equal to ΔH°rxn when the reagents are in their elemental state (ΔH°f = 0) and form one mole of product.
We have to find the reagents that are in their elemental state and that only form one mole of product:
A) 2Ca (s) + O₂ (g) → 2CaO (s)
The reagents are in their elemental state but the reaction forms two mole of product.
B) C₂H₂ (g) + H₂ (g) → C₂H₄ (g)
C₂H₂ (g) is not in its elemental state.
C) 2C (graphite) + O₂ (g) → 2CO (g)
Graphite and Oxygen are in their elemental state but the reaction forms two mole of product.
D) 3Mg (s) + N₂ (g) → Mg₃N₂ (s)
Magnesium and Nytrogen are in their elemental state and the reaction forms one mole of product.
E) C (diamond) + O₂ (g) → CO₂ (g)
Diamond is not in its elemental state.
An osmolarity of saline solution is 308 mosmol/L.
m(NaCl) = 9 g; the mass of sodium chloride
V(solution) = 1 L; the volume of the saline solution
n(NaCl) = 9 g ÷ 58.44 g/mol
n(NaCl) = 0.155 mol; the amount of sodium chloride
number of ions = 2
Osmotic concentration (osmolarity) is a measure of how many osmoles of particles of solute it contains per liter.
The osmolarity = n(NaCl) ÷ V(solution) × 2
The osmolarity = 0.154 mol ÷ 1 L × 2
The osmolarity = 0.154 mol/L × 1000 mmol/m × 2
The osmolarity of the saline solution = 308 mosm/L.
More about osmolarity: brainly.com/question/13258879
#SPJ4