Emf e = 11
r 1 = 3.0
r 2 = 3.0
r 3 = ?
The two in parallel are equivalent to 3 • 3/6 = 1.5 Ω
To have 2.4 volts across them, the current is I = 2.4/1.5 = 1.6 amps. and the unknown R = (11–2.4) / 1.6 = 5.375 Ω or 5.4 Ω
The frictional force is 39.4 N
Explanation:
We can solve this problem by applying Newton's 2nd law of motion: in fact, the net force acting on the block is equal to the product between its mass and its acceleration. So we can write

where
is the net force
m is the mass
a is the acceleration
Here we know that the box is moving with constant velocity, so its acceleration is zero:

This means that the net force is also zero:

The net force on the block is given by the applied force, forward, and the frictional force, backward:

where
is the applied force
is the frictional force
Therefore, solving for
,

Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
Oxygen is diatomic, so its degree of freedom, (f1)= 5,
also its number of moles, n1= 1
Helium is monoatomic, so its degree of freedom (f2)= 3
and its number of moles given is, n2=2
Now using formula of effective degree of freedom of mixture, (f), we have:
f= (f1n1+f2n2)/(n1+n2)
= (5*1 + 3*2)/ (1+3)
=11/3
Also, from first law of thermodynamics;
U= n Cv. T = nRT(f2)
or, Cv = R. (f/2) (n & T cancel)
We know f=11/6,
substituting the value in above relation, we have:
Cv= R. 11/3*2
= R. 11/6
Also, Cp-Cv = R
or, Cp- R.(11/6)= R
or, Cp= R(11/6 )+1
= 17/6 R
Therefore, Cp/Cv = 17/11
Answer:
v0 = 25 m/s
vf = 0 m/s
a = -9.80 m/s^2
change in x = 31.89m
but that's only 1/3 of the hight, so i time it by 3 to get 96m
78.4 F because you do 8.00 muliplyed by 9.8