Answer:
534.9 N
Explanation:
The skier weight is his mass times gravitational acceleration g
W = mg = 103 * 9.8 = 1009.4 N
This weight can be divided into 2 components, one perpendicular and the other parallel to the 32-degree slope. The parallel component would equal to

Option B
Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury correctly describes the usual order of planets inward toward the sun
<u>Explanation:</u>
Our solar system continues much considerably than the eight planets that revolve around the Sun. The position of the planets in the solar system, commencing inward to the sun is the accompanying: Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury.
Most next to the Sun, simply rocky material could resist the heat. For this logic, the first four planets: Mercury, Venus, Earth, and Mars are terrestrial planets. The four large outer worlds — Jupiter, Saturn, Uranus, and Neptune: because of their enormous size corresponding to the terrestrial planets. They're also frequently composed of gases like hydrogen, helium, and ammonia preferably than of rocky surfaces.
Answer:
Staying connected to friends
Explanation:
hope this helps
Answer:
The horizontal distance is 4.823 m
Solution:
As per the question:
Mass of man, m = 65.0 kg
Height of the hill, H = 5.00 m
Mass of the backpack, m' = 20.0 kg
Height of ledge, h = 2 m
Now,
To calculate the horizontal distance from the edge of the ledge:
Making use of the principle of conservation of energy both at the top and bottom of the hill (frictionless), the total mechanical energy will remain conserved.
Now,
where
KE = Kinetic energy
PE = Potential energy
Initially, the man starts, form rest thus the velocity at start will be zero and hence the initial Kinetic energy will also be zero.
Also, the initial potential energy will be converted into the kinetic energy thus the final potential energy will be zero.
Therefore,
where
v = velocity at the hill's bottom
Now,
Making use of the principle of conservation of momentum in order to calculate the velocity after the inclusion, v' of the backpack:



Now, time taken for the fall:



Now, the horizontal distance is given by:
x = v't = 
Answer:
oh I'm so sorry I can't answer your question it has been a long time since I learned that. so I totally forgot how to do this. sorry!