Answer:

Explanation:
Iron is Fe, nitrogen is N. Nitrogen is diatomic, which means it occurs as a molecular pair by itself. Iron III nitride has a chemical formula of FeN because nitrogen has a charge of 3-, and iron III tells us the iron has a charge of 3+ so you just need one of each to make the charges balance and the compound neutral.
V1 = 30 mL
P1 = 760 torr
P2 = 1520 torr
V2 = ?
applying Boyle's Law
P1*V1 = P2*V2
760 torr * 30 mL = 1520 torr * V2
V2 = 760 torr * 30 mL / 1520 torr
( C ) is correct
An ionization suppressor is an alkali metal capable of preventing ionization, which can be used in atomic spectroscopy to determine matter composition.
<h3>What is ionization?</h3>
Ionization refers to the phenomena capable of converting neutral atoms/molecules to electrically charged atoms/ions.
Ionization is a process by which radiation (e.g., alpha, beta, gamma rays) can pass energy to inert matter.
Some examples of ionization suppressors include salts of alkali metals (for example, potassium), which can be used in atomic spectroscopy to determine matter composition.
Learn more about ionization here:
brainly.com/question/1445179
First, in order to calculate the specific heat capacity of the metal in help in identifying it, we must find the heat absorbed by the calorimeter using:
Energy = mass * specific heat capacity * change in temperature
Q = 250 * 1.035 * (11.08 - 10)
Q = 279.45 cal/g
Next, we use the same formula for the metal as the heat absorbed by the calorimeter is equal to the heal released by the metal.
-279.45 = 50 * c * (11.08 - 45) [minus sign added as energy released]
c = 0.165
The specific heat capacity of the metal is 0.165 cal/gC
Answer: 4.4 x 10^-7
Explanation:
The dissociation equation for this reaction is:
MgCO3 (s) → Mg+2 (aq) + CO3-2 (aq)
(Here 0.08 >>> x )

So the solubility MgCO₃ in a solution that containing 0.080 M Mg²⁺ is 4.4 x 10^-7