The easiest way is to fill two very light globes, each with a different gas.
Blow globe 1 with gas from the cylinder marked with label 1, and blow glove 2 with gas from the cylinder marked with label 2.
If a globe ascends in the air, it is because its gas is less dense than air.
Inflate the globes quite enough to be sure that the mass of the rubber of the globe is not important relative to the mass of gas and so it does not change the results. If you obtain a result where the globe does not have a cliea ascending or descending motion, you can inflate more the globe and it shouuld start to rise if the gas really is less dense than air.
There is a repulsive force between two charged objects when they are of like charges/ they are likely charged (like charges repel each other)
200 Hz = 200 cycles per sec
<span>1 cycle, the period = 1/200 = 0.005 seconds, or 5 milli seconds.</span>
We shall consider two properties:
1. Temperature difference
2. Thermal conductivity of the material
Use a cylindrical rod of a given material (say steel) which is insulated around its circumference.
One end of the rod is dipped in a large reservoir of water at 100 deg.C and the other end is dipped in water (with known volume) at 40 deg. C. The cold water if stored in a cylinder which is insulated on all sides. A thermometer reads the temperature of the cold water as a function of time.
This experiment will show that
(a) heat flows from a region of high temperature to a region of lower temperature.
(b) The thermal energy of a body increases when heat is added to it, and its temperature will rise.
(c) The thermal conductivity of water determines how quickly its temperature will rise. If mercury replaces water in the cold cylinder, its temperature will rise at a different rate because its thermal conductivity is different.
Answer:
A box sits stationary on a ramp
Explanation:
Static friction is a force which keeps an object at rest as it is in the case of the box. It has to be overcome for the object to be set into motion.
Static force of friction is calculated as follows:
F= μη
F is static force of friction.
μ is the coefficient of static friction.
η is the normal force.