Velocidad angular = (angulo total) / (tiempo total)
Velocidad angular = (1080 grados) / (20 segundos)
Velocidad angular = (1080/20) g/s
Velocidad angular = 54 g/s
Pero 180 grados = π radianes
V.A. = (54 g/s) x (π rad / 180 g)
V.A. = (54π gr-rad / 180 seg-gr)
<em>V.A. = 0.3π rad/seg</em>
V.A. = aproximadamente 0.942 rad/seg
The total charge on the interior of the conductor is zero.
The total charge on the exterior of the conductor is 8q.
<h3>
Total charge on the interior</h3>
Due to large number of electrons available for conduction in a conductor, most of the electrons moves to surface leaving zero net charge inside the conductor.
Thus, the total charge on the interior of the conductor is zero.
<h3>T
otal charge on the exterior</h3>
The total charge on the exterior of the conductor is calculated as follows;
Q = q + 7q = 8q
Thus, the total charge on the exterior of the conductor is 8q.
Learn more about net charge on interior and exterior of conductors here: brainly.com/question/14653264
Hello there.
<span>In the context of depth perception, which of the following is a monocular cue?
</span><span>(C) Convergence
</span>
For a curved mirror, all points have the same normal and the angle of incidence is also equal to the angle of reflection.
According to the laws of reflection, the incident ray, reflected ray and normal all lie on the same plane. For a curved mirror, the normal remains the same at all points along the curved mirror.
Again, the angle made between the incident ray and the normal is the same as the angle made between the reflected ray and the normal. Therefore, the angle of reflection is equal to the angle of incidence.
Learn more: brainly.com/question/17638582
Answer:
<em>-z axis</em>
Explanation:
According to the left hand rule for an electron in a magnetic field, hold the thumb of the left hand at a right angle to the rest of the fingers, and the rest of the fingers parallel to one another. If the thumb represents the motion of the electron, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the electron. In this case, the left hand will be held out with the thumb pointing to the right (+x axis), and the palm facing your body (-y axis). The magnetic field indicated by the other fingers will point down in the the -z axis.