Answer:
The amount of mass that needs to be converted to release that amount of energy is 
Explanation:
From Albert Einstein's Energy equation, we can understand that mass can get converted to energy, using the formula

where
= change in mass
c = speed of light = 
Making m the subject of the formula, we can find the change in mass to be

There fore, the amount of mass that needs to be converted to release that amount of energy is 1.122 X 10 ^-7 kg
The magnitude of the electric field at the proton's location is 10,437.5 N/C.
<h3>What the magnitude of the
electric field?</h3>
The size of the electric field is basically characterized as the power per charge on the test charge. On the off chance that the electric field strength is meant by the image E. Very much like gravity, electric fields work the same way. In any case, while gravity generally draws in, an electric field, then again, can either rebuff or draw in. By and large, the Electric Field submits to the super-position guideline. the all out Electric Field from various charges is equivalent to the amount of the electric fields from each charge separately. An electric field is the actual field that encompasses electrically charged particles and applies force on any remaining charged particles in the field, either drawing in or repulsing them.
Learn more about the magnitude of the electric field, visit
brainly.com/question/26898699
#SPJ4
Answer:
0.546 
Explanation:
From the given information:
The force on a given current-carrying conductor is:

where the length usually in negative (x) direction can be computed as

Now, taking the integral of the force between x = 1.0 m and x = 3.0 m to get the value of the force, we have:



![F = I (9.0) \bigg [\dfrac{x^3}{3} \bigg ] ^3_1 \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7Bx%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%5E3_1%20%5Chat%20k)
![F = I (9.0) \bigg [\dfrac{3^3}{3} - \dfrac{1^3}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B3%5E3%7D%7B3%7D%20-%20%5Cdfrac%7B1%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
where;
current I = 7.0 A
![F = (7.0 \ A) (9.0) \bigg [\dfrac{27}{3} - \dfrac{1}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B27%7D%7B3%7D%20-%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
![F = (7.0 \ A) (9.0) \bigg [\dfrac{26}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B26%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
F = 546 × 10⁻³ T/mT 
F = 0.546 
Answer:
force of the breaks is 6650 N, direction opposite to direction of movement
Explanation:
Answer:
Star, hydrogen and energy
Explanation:
A star is a large ball of gas that generates its own energy by fusing hydrogen atoms to make helium. It is held together by its own gravity. This process emits a tremendous amount of energy, and some of the energy is in the form of light.
The energy released from the collapse of the gas into a protostar causes the center of the protostar to become extremely hot. When the core is hot enough, nuclear fusion commences. Fusion is the process where two hydrogen atoms combine to form a helium atom, releasing energy.