Distance= Time×Speed
= 1800×1.5
= 2700 m
I am not sure it's right. the question itself is confusing.
Answer:

Explanation:
So, we are looking for an expression of the amount of water that has been drained from the tub. The expression is in terms of v that represent the number of gallons of water drained since the plug was pulled. Since we are interested in the pounds of water that has been drained from the tub we need to take into account that for every gallon of water drained, 8.345 pounds have left the tub. Therefore, the expression for the weight of water Q that has been drained from the tub in terms of v is simply :

Where v is the amount of gallons that has been drained from the tub.
Have a nice day. let me know if I can help with anything else
C is the first & the second question is A
Answer:
The system loses 90 kJ of heat
Explanation:
We can answer the question by using the 1st law of thermodynamics, which states that:

where
is the change in internal energy of the system
is the heat absorbed by the system (positive if absorbed, negative if released by the system)
is the work done by the system (positive if done by the system, negative if done by the surrounding on the system)
In this problem, we have:
is the work done (negative, because it is done by the surrounding on the system)
is the increase in internal energy
Using the equation above, we can find Q, the heat absorbed/released by the system:

And the negative sign means that the system has lost this heat.
The concept required to solve this problem is the optical relationship that exists between the apparent depth and actual or actual depth. This is mathematically expressed under the equations.

Where,
Depth of glass
Refraction index of water
Refraction index of glass
Refraction index of air
Depth of water
I enclose a diagram for a better understanding of the problem, in this way we can determine that the apparent depth in the water of the logo would be subject to



Therefore the distance below the upper surface of the water that appears to be the logo is 4.041cm