Its really hurts
Explanation:
Charge A and charge B are 2.2 m apart. Charge A is 1.0 C, and charge B is
2.0 C. Charge C, which is 2.0 C, is located between them and is in
electrostatic equilibrium. How far from charge A is charge C?
Doubling the size of a load resistor increases the load current. Increasing the load resistance, in turn the total circuit resistance is reduced. The load current would not be half as much since when you increase the size of load resistor then load current increases.
Answer:
B
Explanation:
this is because the neutrons do not have a charge, the things that have charge in an atom are electrons and protons.
and in the nucleus of an atom, there are protons and neutrons so you can see that A is not the answer
if you see the periodic table, you will know that the number of electrons and protons are equal, so the charges cancel each other out, hence the charge of an atom will be neutral
let me give you a tip which I got from my teacher, never write there is no charge in the atom, this suggests that there is no protons or electrons.
instead, write, the it is neutral
hope it helps if not please report it so that someone else gets to try it out
The equation to find force is f=ma. So, if you plug in the information that you have you'll get F=5x3 and that'll equal F=15N
Answer:
0.021 V
Explanation:
The average induced emf (E) can be calculated usgin the Faraday's Law:
<u>Where:</u>
<em>N = is the number of turns = 1 </em>
<em>ΔΦ = ΔB*A </em>
<em>Δt = is the time = 0.3 s </em>
<em>A = is the loop of wire area = πr² = πd²/4 </em>
<em>ΔB: is the magnetic field = (0 - 1.04) T </em>
Hence the average induced emf is:
Therefore, the average induced emf is 0.021 V.
I hope it helps you!