1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
9

What are the results of inserting a crimp connector into the crimp tool facing the wrong way ?

Physics
1 answer:
Margaret [11]3 years ago
8 0

If you insert a crimp pin incorrectly, the ratcheted crimp tool will not sufficiently crimp the tabs. As a result, the wire may not fully conduct with the pin and the pin will be damaged.

<u>Explanation:</u>

The general theory for crimping all types of connectors is to strip a little bit of insulation off the wire. Then, put the connector into a suitably sized space in the jaws, insert the wire, and crimp it down. For non-ratcheting pliers, it's suggested the connector be re-crimped with the next smallest hole in the jaws.

A good crimp connection is gas tight and won't wick: it is sometimes referred to as a “cold weld”. Like the solder method, it can be used on solid or stranded conductors, and provides a good mechanical and electrical connection.

You might be interested in
When an external magnetic flux through a conducting loop decreases in magnitude, a current is induced in the loop that creates i
Shkiper50 [21]

Answer:

Len's law

Explanation:

We can explain this exercise using Len's law

when the magnetic flux decreases, a matic flux appears that opposes the decrease, thus maintaining the value of the initial luxury.

7 0
3 years ago
A minivan is tested for acceleration and braking. In the street-start acceleration test, the elapsed time is 8.6 s for a velocit
Varvara68 [4.7K]

The question is incomplete. Here is the complete question:

A minivan is tested for acceleration and braking. In the street-start acceleration test, the elapsed time is 8.6 s for a velocity increase from 10 km/h to 100 km/h. In the braking test, the distance traveled is 44 m during braking to a stop from 100 km/h. Assume constant values of acceleration and deceleration. Determine  

(a) the acceleration during the street-start test,  

(b) the deceleration during the braking test.

Answer:

(a) 37500 km/h²

(b) 113636.36 km/h²

Explanation:

part (a)

Because it is given that we can assume constant acceleration therefore we can use the following equation of motion:

<em>v = u + (a)(t) </em>

where <em>v </em>is final velocity, <em>u </em>is initial velocity, <em>a </em>is acceleration and <em>t </em>is time change

Given in the question:

v = 100km/h

u = 10 km/h

t = 8.6 sec (changing to hours)

t = 0.0024 hours (round off to 4 decimal places)

100 = 10 + (a x 0.0024)

Rearranging the equation to find value of a

a = (100 – 10) / 0.0024

a = 37500 km/h² (Answer)

part (b)

Now we can use the following equation to find deceleration

<em>2(a)(s) = v² – u²</em>

Where a is acceleration, s is distance travelled, v is final velocity and u is initial velocity

Given in the question

s = 44 m

changing to km

s = 0.044 km

v = 0 km/h (because it stops)

u = 100 km/h

2(a)(0.044) = (0)² – (100)²

0.088(a) = 0 - 10000  

a = - 10000/0.088

a = - 113636.36 km/h2  

The negative sign in the answer shows that it is deceleration

Therefore deceleration = 113636.36 km/h² (Answer)

6 0
3 years ago
Calculate the amount of heat needed to raise 1.0 kg of ice at -20 degrees Celsius to steam at 120 degree Celsius
CaHeK987 [17]

Answer:

801.1 kJ

Explanation:

The ice increases in temperature from -20 °C to 0 °C and then melts at 0 °C.

The heat required to raise the ice to 0 °C is Q₁ = mc₁Δθ₁ where m =  mass of ice = 1 kg, c₁ = specific heat capacity of ice = 2108 J/kg°C and Δθ₁ = temperature change. Q₁ = 1 kg × 2108 J/kg°C × (0 - (-20))°C = 2108 J/kg°C × 20  °C = 4216 J

The latent heat required to melt the ice is Q₂ = mL₁ where L₁ = specific latent heat of fusion of ice = 336000 J/kg. Q₁ = 1 kg × 336000 J/kg = 336000 J

The heat required to raise the water to 100 °C is Q₃ = mc₂Δθ₂ where m =  mass of ice = 1 kg, c₂ = specific heat capacity of water = 4187 J/kg°C and Δθ₂ = temperature change. Q₃ = 1 kg × 4187 J/kg°C × (100 - 0)°C = 4187 J/kg°C × 100  °C = 418700 J

The latent heat required to convert the water to steam is Q₄ = mL₂ where L = specific latent heat of vapourisation of water = 2260 J/kg. Q₄ = 1 kg × 2260 J/kg = 2260 J

The heat required to raise the steam to 120 °C is Q₅ = mc₃Δθ₃ where m =  mass of ice = 1 kg, c₃ = specific heat capacity of steam = 1996 J/kg°C and Δθ₃ = temperature change. Q₃ = 1 kg × 1996 J/kg°C × (120 - 100)°C = 1996 J/kg°C × 20  °C = 39920 J

The total amount of heat Q = Q₁ + Q₂ + Q₃ + Q₄ + Q₅ = 4216 J + 336000 J

+ 418700 J + 2260 J + 39920 J = 801096 J ≅ 801.1 kJ

4 0
3 years ago
Monochromatic light falls on two very narrow slits 0.048 mm apart. successive fringes on a screen 5.00 m away are 6.5 cm apart n
atroni [7]
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is
y= \frac{m \lambda D}{d}
where D=5.00 m is the distance of the screen from the slits, and 
d=0.048 mm=0.048 \cdot 10^{-3}m is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
\lambda =  \frac{yd}{mD}= \frac{(0.065 m)(0.048 \cdot 10^{-3}m)}{(1)(5.00 m)}=  6.24 \cdot 10^{-7}m

And from the relationship between frequency and wavelength, c=\lambda f, we can find the frequency of the light:
f= \frac{c}{\lambda}= \frac{3 \cdot 10^8 m/s}{6.24 \cdot 10^{-7}m}=4.81 \cdot 10^{14}Hz
4 0
3 years ago
In avarage,How many times do a child breathe in a
ollegr [7]
On an approximate scale, A child breaths 20 times a minute as compared to only 12 to 16 in resting phase of an Adult.

So, In 60 minutes (1 hour), They breathe = 20 * 60 = 1200
In 24 hours (1 day), They breathe = 1200 * 24 = 28,800

In short, Your Answer would be: 28,800

Hope this helps!
5 0
3 years ago
Read 2 more answers
Other questions:
  • When the actual gas volume is greater than the volume predicted?
    12·1 answer
  • (b) The speed of the vehicle is written as 90 km/h. State the speed in SI unit. Show your working in the space below.
    5·2 answers
  • Why does the moon have a layer of powdery "soil" on its surface?
    12·2 answers
  • An impala is an African antelope capable of a remarkable vertical leap. In one recorded leap, a 45 kg impala went into a deep cr
    6·1 answer
  • The foot of a ladder is 6m away from a wall. if the top of the ladder rest 8 feet up on the wall,how long is the ladder?
    5·1 answer
  • What is its moment of inertia about an axis that passes through its center?
    14·1 answer
  • calculate the pressure produced by applying 15 n force on a flat surface having a width of 60 cm and a length of 5m
    10·1 answer
  • Change to Kelvin 60 degree Celicius؟
    7·1 answer
  • QUICK!! What class of lever is this image depicting?
    9·2 answers
  • A scientist in central Nebraska is studying factors that affect the formation of tornadoes. How might the scientist benefit from
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!