1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
11

How many atoms are present in 3 molecules of chromium

Physics
1 answer:
iren2701 [21]3 years ago
5 0
Answer:

1,8066 x 1024 atoms

Explanation:

1 mole of chromium contains 6,022 x 1023 atoms

so

3 moles of chromium contains 3 times as many atoms

3 x 6,022 x 1023 = 1,8 066 x 1024

You might be interested in
Scientists have found that the most destructive and deadly tornadoes occur from rotating thunderstorms called
Julli [10]

Answer:

Supercells

Explanation:

supercells are rotating thunderstorms that has a well-defined radar circulation called a mesocyclone. They can sometimes produce destructive hail, severe winds, frequent lightning, and flash floods.

8 0
3 years ago
Read 2 more answers
When light is reflected by a mirror, the angle of incidence is always A. equal to the angle of reflection. B. less than the angl
ankoles [38]
When light is reflected by a mirror, the angle of incidence is always <span>A. equal to the angle of reflection. We know this by the Law of Reflection.</span>
6 0
2 years ago
Read 2 more answers
During the middle of a family picnic, Barry Allen received a message that his friends Bruce and Hal
weeeeeb [17]

The kinematics of the uniform motion and the addition of vectors allow finding the results are:

  • The  Barry's initial trajectory is 94.30 10³ m with n angles of θ = 138.8º
  • The return trajectory and speed are v = 785.9 m / s, with an angle of 41.2º to the South of the East

Vectors are quantities that have modulus and direction, so they must be added using vector algebra.

A simple method to perform this addition in the algebraic method which has several parts:

  • Vectors are decomposed into a coordinate system
  • The components are added
  • The resulting vector is constructed

 Indicate that Barry's velocity is constant, let's find using the uniform motion thatthe distance traveled in ad case

              v = \frac{\Delta d}{t}

              Δd = v t

Where  v is the average velocity, Δd the displacement and t the time

We look for the first distance traveled at speed v₁ = 600 m / s for a time

          t₁ = 2 min = 120 s

          Δd₁ = v₁ t₁

          Δd₁ = 600 120

          Δd₁ = 72 10³ m

Now we look for the second distance traveled for the velocity v₂ = 400 m/s    

  time t₂ = 1 min = 60 s

          Δd₂ = v₂ t₂

          Δd₂ = 400 60

          Δd₂ = 24 103 m

   

In the attached we can see a diagram of the different Barry trajectories and the coordinate system for the decomposition,

We must be careful all the angles must be measured counterclockwise from the positive side of the axis ax (East)

Let's use trigonometry for each distance

Route 1

          cos (180 -35) = \frac{x_1}{\Delta d_1}

          sin 145 = \frac{y_1}{\Delta d1}

          x₁ = Δd₁ cos 125

          y₁ = Δd₁ sin 125

          x₁ = 72 103 are 145 = -58.98 103 m

          y₁ = 72 103 sin 155 = 41.30 10³ m

Route 2

          cos (90+ 30) = \frac{x_2}{\Delta d_2}

          sin (120) = \frac{y_2}{\Delta d_2}

          x₂ = Δd₂ cos 120

          y₂ = Δd₂ sin 120

          x₂ = 24 103 cos 120 = -12 10³ m

           y₂ = 24 103 sin 120 = 20,78 10³ m

             

The component of the resultant vector are

              Rₓ = x₁ + x₂

              R_y = y₁ + y₂

              Rx = - (58.98 + 12) 10³ = -70.98 10³ m

              Ry = (41.30 + 20.78) 10³ m = 62.08 10³ m

We construct the resulting vector

Let's use the Pythagoras' Theorem for the module

             R = \sqrt{R_x^2 +R_y^2}

             R = \sqrt{70.98^2 + 62.08^2}   10³

             R = 94.30 10³ m

We use trigonometry for the angle

             tan θ ’= \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{62.08}{70.98}

             θ ’= 41.2º

Since the offset in the x axis is negative and the displacement in the y axis is positive, this vector is in the second quadrant, to be written with respect to the positive side of the x axis in a counterclockwise direction

            θ = 180 - θ'

            θ = 180 -41.2

            θ = 138.8º

Finally, let's calculate the speed for the way back, since the total of the trajectory must be 5 min and on the outward trip I spend 3 min, for the return there is a time of t₃ = 2 min = 120 s.

The average speed of the trip should be

             v = \frac{\Delta R}{t_3}  

             v = \frac{94.30}{120}  \ 10^3

              v = 785.9 m / s

in the opposite direction, that is, the angle must be

               41.2º to the South of the East

In conclusion, using the kinematics of the uniform motion and the addition of vectors, results are:

  • To find the initial Barry trajectory is 94.30 10³ m with n angles of  138.8º
  • The return trajectory and speed is v = 785.9 m / s, with an angle of 41.2º to the South of the East

Learn more here:  brainly.com/question/15074838

4 0
2 years ago
How many photons are absorbed during the dental x-ray?
MariettaO [177]
<span>E=hc/wav. len
E = (6.62 x 10^-34 x 3 x 10^8)/0.0275 x 10^-9
E = 7.22182 x 10^-15 J
To convert to eV divide by 1.6 x 10^-19
E = 7.22182 x 10^-15/1.6 x 10^-19 eV
E =45.36 x 10^3 eV
Th energy, E, of a single x-ray photon in eV is = 45.36keV.

Number of photons, n = total energy/ energy of photon
n = 3.85 x 10^-6/7.22182 x 10^-15
n = 5.33 x 10^8 photons </span>
8 0
2 years ago
Suppose that a star has a spectrum that includes red, blue, and violet lines spaced in the pattern of the lines from hydrogen bu
ladessa [460]

Answer:

It can be concluded that the star is moving away from the observer.

Explanation:

Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving  toward the observer, or to the red part of the spectrum when is moving away from the observer (that is known as the Doppler effect).

The wavelength at rest for this case is 434 nm and 410 nm (\lambda_{0} = 434nm, \lambda_{0} = 410nm)

Redshift: \lambda_{measured}  >  \lambda_{0}

Blueshift: \lambda_{measured}  <  \lambda_{0}

Since, \lambda_{measured} (444nm) is greater than \lambda_{0} (434 nm) and \lambda_{measured} (420nm) is greater than \lambda_{0} (410 nm), it can be concluded that the star is moving away from the observer

6 0
3 years ago
Other questions:
  • How do different lense types connect to helping locate sharks through mechanical radio waves?​
    6·1 answer
  • Nate the Skate was an avid physics student whose main non-physics interest in life was high-speed skateboarding. In particular,
    15·1 answer
  • Which of the following is a function of the atmosphere?
    14·2 answers
  • A car travels 98 km. It takes 34.92 minutes to complete the trip. What was the average speed?
    9·1 answer
  • Does voltage flow in a circuit? Explain
    5·1 answer
  • According to the law of conservation of energy, how are potential energy and kinetic energy related?
    6·1 answer
  • Jamie dropped a water bottle from the top of an office building. The water bottle impacted the ground after falling for 5 second
    12·1 answer
  • g Consider a (12.5 A) cm long metal bar moving horizontally across a vertical magnetic field at a speed of (2.40 B) m/s. The mag
    12·1 answer
  • The density of a gas sample in a balloon is 1.50 g/l at 75°c. what is the density of this gas when the temperature is changed t
    12·1 answer
  • A bicyclist, initially at rest, begins pedaling and gaining speed steadily for 4.90s during which she covers 32.0m.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!