Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law

Where, f = restoring force


Put the value into the formula


We need to calculate the kinetic energy of the mass
Using formula of kinetic energy

Here, 

Here, 


Put the value into the formula


Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Answer:
Alaska: Hydrokinetic Energy Campbell CR9000X used for in-stream hydrokinetic device evaluation. Marine hydrokinetic energy power generation is an emerging sector in the renewable energy portfolio. Hydrokinetic devices convert the energy of waves, tidal currents, ocean currents or river currents into electrical power.
The energy added here is potential energy since it is moving upward 180 meters in a gravitational field. This is then turned into KE when it rolls down. 2524N x 180m = 454,320J
Meters per second squared:

If you think about it, acceleration is about how fast speed changes. Speed is measured in meters per second:

So if you take that and just measure it over time, you get meters per second squared.