Q. The energy emitted from the sun is a product of ________.
A. Fusion
A positive charge and a negative charge held a certain distance apart are released. as they move, the force on each particle increases
The most common charge carriers are the positively charged proton and the negatively charged electron. The movement of any of these charged particles constitutes an electric current
<h3>What is a Charge ?</h3>
When there are more or fewer protons in an atom than electrons, the substance has an electric charge. Protons have a positive charge, while electrons have a negative charge. If a substance has more protons than electrons, it is positively charged; if it has more electrons, it is negatively charged.
- The SI units for charge are ampere-second or coulomb. When one ampere of electric current goes through the conductor for one second, one coulomb of charge passes through it. Charge is denoted by the formula Q = I t.
Learn more about Charge here:
brainly.com/question/18102056
#SPJ4
To solve this problem we will apply the concepts related to the Electrostatic Force given by Coulomb's law. This force can be mathematically described as

Here
k = Coulomb's Constant
Charge of each object
d = Distance
Our values are given as,


d = 1 m
a) The electric force on charge
is


Force is positive i.e. repulsive
b) As the force exerted on
will be equal to that act on
,


Force is positive i.e. repulsive
c) If
, a negative sign will be introduced into the expression above i.e.


Force is negative i.e. attractive
Energy stored in a capacitor is Electric Potential Energy. Capacitor is device used for storing energy. The work done to charge is a capacitor is stored in it in the form of Electrical potential energy. Electrical potential energy is defined as capacity to do work due to the position change. For example, we know fans have capacitor installed in it. When we turn off the fan, it continue moving using the electrical energy stored in the capacitor.
Answer: 10Nm or 10J
Explanation:
Given the following :
Force (f) = 5
Distance (d) = 2m
Calculate the kinetic energy assuming no friction
Work done = force × distance
Work done = 5N × 2m = 10Nm
Recall :
Work done = ΔK.E ( change in kinetic energy)
Therefore, kinetic energy of the book after sliding = ΔK. E, which is equal to work done.
Hence, K. E of book after sliding is 10Nm