Answer:
The angle is 
Explanation:
From the question we are told that
The distance of the dartboard from the dart is 
The time taken is 
The horizontal component of the speed of the dart is mathematically represented as

where u is the the velocity at dart is lunched
so

substituting values

=> 
From projectile kinematics the time taken by the dart can be mathematically represented as

=> 


=> 
![\theta = tan^{-1} [0.277]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20tan%5E%7B-1%7D%20%5B0.277%5D)

If a bus travels 30 km in 1/2 hr, then in one hr, he can travel twice the distance.
30*2=60 km
Final answer: 60 km per hr
Answer:
Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous planet increases linearly with the height of the atmosphere as measured from the top of a visible boundary layer, defined as 0 kilometers in altitude. The instruments on board can withstand a temperature of 601 K. At what altitude will the probe's instruments fail? A. 50 kilometers B. 80 kilometers C. 83 kilometers D. 100 kilometers E. 111 kilometers
Explanation:
A. 50 kilometers
Answer:
Given
Frequency (f) = 3Hz
Wavelength = 9 m
Speed = ?
Explanation:
we know
Speed = wavelength * frequency
= 9*3
= 27 m/ s
Answer:

Explanation:
<u>Vertical Launch Upwards</u>
In a vertical launch upwards, an object is launched vertically up without taking into consideration friction with the air.
If vo is the initial speed and g is the acceleration of gravity, the maximum height reached by the object is given by:

The tennis ball was thrown straight up with a speed of v0=22.5 m/s. The acceleration of gravity is g=9.81\ m/s^2, thus:

