Answer:
(a) 
(b) 
(c) 
Explanation:
Hello,
(a) In this case, since entropy remains unchanged, the constant
should be computed for air as an ideal gas by:


Next, we compute the final temperature:

Thus, the work is computed by:

(b) In this case, since
is given, we compute the final temperature as well:

And the isentropic work:

(c) Finally, for isothermal, final temperature is not required as it could be computed as:

Regards.
It would be C i’m pretty sure
Answer:
They have the chance to inhale toxic fumes secreted by the mixture.
Explanation:
Answer:
"Carbon dioxide (CO2) is one of a number of gases that are transparent to the visible light falling on the Earth from the Sun, but absorb the infra-red radiation (heat) emitted by the warm surface of the Earth, preventing its loss into space. During the geological history of the Earth the level of atmospheric CO2 has varied considerably and this has had an impact on the global temperature. A significant amount of this atmospheric carbon was sequestered or (removed from the atmosphere) and turned into inert material (coal, and oil) typically 300-360 Million years ago. All of the global ecosystems and species have adapted to a lower level of atmospheric CO2 and critically, human civilisation has also grown since that period. Since the industrial revolution humans have been burning sequestered CO2 in the form of coal, oil, and natural gas which has the result of releasing energy but also releases CO2 back into the atmosphere".
To get the concentration of the second solution let us use the following formulae
C1V1=C2V2 where C1 is concentration of first solution and V1 is the volume of solution first solution. on the other hand C2 is the concentration of second solution and V2 is the volume of second solution.
therefore
0.8×2=(2+10)×C2
1.6 =12×C2
1.6/12=C2
C2 = 0.1333mg/mL