1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
3 years ago
14

Please answer any of these thanks !

Physics
1 answer:
KIM [24]3 years ago
7 0
1).  The equation is: (speed) = (frequency) x (wavelength)

Speed = (256 Hz) x (1.3 m) = 332.8 meters per second

 2).  If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.

If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.

If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.

3).  The equation is:  Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)

Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.

That's ' 200 k Hz ' .

Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised.  They broadcast on several different frequencies,
and one of them is 198 kHz !
You might be interested in
The luminous star Alnilam in the Orion belt is 1,340 light-years away from Earth. Use the conversion factor 1 parsec = 3.262 lig
svlad2 [7]

The answer is 410.8 pc.

8 0
3 years ago
Read 2 more answers
Match each example to its type of energy.
PtichkaEL [24]
Solar energy - A

nuclear energy - B

fossil fuel energy - C

wind energy - D

geothermal energy - E

6 0
3 years ago
Rank the ten objects from loudest to softest.
frez [133]
Um what are the ten objects..?
5 0
3 years ago
3. A football is kicked with a speed of 35 m/s at an angle of 40°.
jarptica [38.1K]

a) 22.5 m/s

The initial vertical velocity is given by:

u_y = u sin \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_y = (35)(sin 40)=22.5 m/s

b) 26.8 m/s

The initial horizontal velocity is given by:

u_x = u cos \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_x = (35)(cos 40)=26.8 m/s

c) 2.30 s

The time it takes for the ball to reach the maximum heigth can be found by considering the vertical motion only. This is a uniformly accelerated motion (free-fall), so we can use the suvat equation

v_y = u_y + at

where

v_y is the vertical velocity at time t

u_y = 22.5 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity (negative because it is downward)

At the maximum height, the vertical velocity becomes zero, v_y =0; substituting, we find the time t at which this happens:

0=u_y + gt\\t=-\frac{u_y}{g}=-\frac{22.5}{-9.8}=2.30 s

d) 25.8 m

The maximum height can also be found by considering the vertical motion only. We can use the following suvat equation:

s=u_y t + \frac{1}{2}gt^2

where

s is the vertical displacement at time t

u_y = 22.5 m/s

g=-9.8 m/s^2

Substituting t = 2.30 s, we find the displacement at maximum height, so the maximum height:

s=(22.5)(2.30)+\frac{1}{2}(-9.8)(2.30)^2=25.8 m

e) 123.3 m

In order to find how far does the ball lands, we have to consider the horizontal motion.

First of all, the time it takes for the ball to go back to the ground is twice the time needed for reaching the maximum height:

t=2(2.30 s)=4.60 s

Then, we consider the horizontal motion. There is no acceleration along this direction, so the horizontal velocity is constant:

v_x = 26.8 m/s

Therefore, the horizontal distance travelled during the whole motion is

d=v_x t = (26.8)(4.60)=123.3 m

So, the ball lands 123.3 m far from the initial point.

4 0
3 years ago
Ross training for a half marathon which is 13.1 miles long. Within four months he has progressed to an 11 mile practice run if R
damaskus [11]

If Ross takes two months off from training, his fitness level will reduce in comparison to what it was two months ago.

  • In as little as 3–4 weeks after beginning strength training, Ross will probably experience weight increase, energy loss, diminished balance, diminished strength (making it tougher to carry out daily tasks), and overall fewer fitness levels.
  • Many people mistakenly believe they lose muscle mass far more quickly than they actually do because their muscles' ability to store water and glycogen is declining.
  • A decrease in strength and muscle mass, with beginners experiencing a smaller decline in strength than experienced lifters.
  • Ross will experience Increased VO2 Max from exercise. VO2 Max is almost completely lost in people who train at lower intensities.

learn more about fitness here: brainly.com/question/13490156

#SPJ10

4 0
2 years ago
Other questions:
  • An alien spacecraft flies directly over a football stadium at a speed of 0.50c. if the proper length of the field is 100 yards,
    10·1 answer
  • a .1-kilogram ball rolls across the floor at a speed of 2 meters per second. Another .1 kilogram ball rests on a shelf 1 meter a
    8·1 answer
  • A 0.37-kg object connected to a light spring with a force constant of 23.2 N/m oscillates on a frictionless horizontal surface.
    8·1 answer
  • Acrostic poem for cell theory. Especially theory
    5·1 answer
  • HELP IM IN A EXAM!!!
    11·2 answers
  • PLEASE HELP!!!!!!!!!!!!!!!!!!!
    15·1 answer
  • A spring stretches 2 meters when a 12 N force is acting on it. What is the spring constant (k)? 10 N/m 0.17 N/m 2 N/m 6 N/m
    13·1 answer
  • Examples of a/an _______ observation are 37 m, 9.37 s, and 100 mph.
    15·1 answer
  • 8. Where are the ribosomes usually located in plant and animal cells?
    6·1 answer
  • while standing on the sidewalk facing the road, you see a bicyclist passing by toward your right. in the reference frame of the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!