Answer: µ=0.205
Explanation:
The horizontal forces acting on the ladder are the friction(f) at the floor and the normal force (Fw) at the wall. For horizontal equilibrium,
f=Fw
The sum of the moments about the base of the ladder Is 0
ΣM = 0 = Fw*L*sin74.3º - (25.8kg*(L/2) + 67.08kg*0.82L)*cos74.3º*9.8m/s²
Note that it doesn't matter WHAT the length of the ladder is -- it cancels.
Solve this for Fw.
0= 0.9637FwL - (67.91L)2.652
Fw=180.1/0.9637
Fw=186.87N
f=186.81N
Since Fw=f
We know Fw, so we know f.
But f = µ*Fn
where Fn is the normal force at the floor --
Fn = (25.8 + 67.08)kg * 9.8m/s² =
910.22N
so
µ = f / Fn
186.81/910.22
µ= 0.205
Answer:
333.3 m
Explanation:
Given

Potential energy =
......Equation(1)
We know that
Potential energy=mgh
Kinetic energy =
Now From the Equation(1)

Answer:
The specific heat capacity of the zinc metal measured in this experiment is 0.427 J/g.°C
Explanation:
From the experimental data, the water loses heat because its initial temperature is greater than the final temperature of the mixture. On the other hand, the zinc metal gains heat because its initial temperature is less than the final temperature of the mixture
Heat loss by water = Heat gain by zinc metal
m1C1(T1 - T3) = m2C2(T3 - T2)
m1 is mass of water = 55.4 g
C1 is specific heat capacity of water = 4.2 J/g.°C
m2 is mass of zinc metal = 23.4 g
C2 is specific heat capacity of zinc metal
T1 is the initial temperature of water = 99.61 °C
T2 is the initial temperature of zinc metal = 21.6 °C
T3 is the final temperature of the mixture = 96.4 °C
55.4×4.2(99.61 - 96.4) = 23.4×C2(96.4 - 21.6)
746.9028 = 1750.32C2
C2 = 746.9028/1750.32 = 0.427 J/g.°C
Answer:
because only two electrons can fit in the first orbit around the nucleus, and each period on the table is organized by number of orbits
Answer:
9.3 g/cm³
Explanation:
First, convert kg to g:
0.485 kg × (1000 g / kg) = 485 g
Density is mass divided by volume:
D = (485 g) / (52 cm³)
D = 9.33 g/cm³
Rounding to two significant figures, the density is 9.3 g/cm³.