Answer:
The velocity of the gun relative to the ground is 19.66 m/s
Explanation:
Given data,
The mass of the gun, M = 15.0 kg
The mass of the bullet, m = 50 g
The velocity of the train, v = 75 km/h
= 20.83 m/s
The velocity of bullet relative to train, V' = 350 m/s
The velocity of bullet relative to ground, V = 350 + 20
= 370 m/s
According to the law of conservation of momentum,
Mv' + mV' = 0


= -1.17 m/s
Therefore, the velocity of the gun with,
v₀ = V + v'
= 20.83 - 1.17
= 19.66 m/s
Hence, the velocity of the gun relative to the ground is 19.66 m/s
Answer:
Absorption
Explanation:
A non-transmitting barrier would not allow a wave to go through. When a wave is unable to pass through a barrier, it is not transmitted and can get absorbed or reflected back. The wave can also try to go round the barrier.
Most likely, the wave gets absorbed by the barrier and it stops it.
Answer: a disadvantage of using a ramp is that it is not safe
The answer is C. that liquids and gases both take the shape of their container.
Think of it this way, if you take an ice cube and put it in your glass, it will stay in its shape and stay that way until it melts. But if you put liquid or a gas into a glass, it will take the shape of the glass that it is put into.
Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly