The energy gained by an electron as it is accelerated by an electric field is equal to the work done by the electric field itself, and this is equal to the product between the charge of the electron and the potential difference across which the electron traveled:

(1)
where e is the electron charge, and

is the potential difference between the initial and the final point of the electron, and this is equal to

(2)
where E is the intensity of the electric field and d is the distance covered by the electron. If we substitute (2) into (1), we find a final expression for the energy gained by the electron
The answers is
D. The acid creates cracks in the rocks, which
allow air to circulate through the rock,
causing it to weather
Answer:modeled as an electromagnetic wave. In this model, a changing electric field creates a changing magnetic field.
Explanation:
Answer:E = hc/? = 4.41 x 10-19 J
Energy absorbed by each atom :
E (atom) = 2.205 x 10-19 J
Now Bond Energy of each molecule (B) = 3.98 x J
So, for each atom 1.99 x 10-19 J
So now
KE of each atom = E(atom) - B (atom)
= 2.15 x 10-19 J
Answer: 8.1 x 10^24
Explanation:
I(t) = (0.6 A) e^(-t/6 hr)
I'll leave out units for neatness: I(t) = 0.6e^(-t/6)
If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).
For neatness let k = 1/(6x3600) = 4.63x10^-5, then:
I(t) = 0.6e^(-kt)
Providing t is in seconds, total charge Q in coulombs is
Q= ∫ I(t).dt evaluated from t=0 to t=∞.
Q = ∫(0.6e^(-kt)
= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.
= -(0.6/k)[e^-∞ - e^-0]
= -0.6/k[0 - 1]
= 0.6/k
= 0.6/(4.63x10^-5)
= 12958 C
Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.