Elastic potential energy.
When you stretch a rubber band it has the "potential" to do work, to fly in a given direction. In doing so it changes it's elastic potential energy to kinetic energy.
Answer: Yes, he is exceeding the speed limit
Explanation:
Hi!
This is problem about unit conversion
1 mile = 1,609.344 m
Then the speed limit v is:
v = 75 mi/h = 120,700.8 m/h
1 hour = 60 min = 60*60 s = 3,600 s
v = (120,700.8/3,600) m/s = 33.52 m/s
38 m/s is higher than the speed limit v.
It totally depends on what kind of wave you're talking about.
-- a sound wave from a trumpet or clarinet playing a concert-A pitch is about 78 centimeters long ... about 2 and 1/2 feet. This is bigger than atoms.
-- a radio wave from an AM station broadcasting on 550 KHz, at the bottom of your radio dial, is about 166 feet long ... maybe comparable to the height of a 10-to-15-story building. This is bigger than atoms.
-- a radio wave heating the leftover meatloaf inside your "microwave" oven is about 4.8 inches long ... maybe comparable to the length of your middle finger. this is bigger than atoms.
-- a deep rich cherry red light wave ... the longest one your eye can see ... is around 750 nanometers long. About 34,000 of them all lined up will cover an inch. These are pretty small, but still bigger than atoms.
-- the shortest wave that would be called an "X-ray" is 0.01 nanometer long. You'd have to line up 2.5 billion of <u>those</u> babies to cover an inch. Hold on to these for a second ... there's one more kind of wave to mention.
-- This brings us to "gamma rays" ... our name for the shortest of all electromagnetic waves. To be a gamma ray, it has to be shorter than 0.01 nanometer.
Talking very very very very roughly, atoms range in size from about 0.025 nanometers to about 0.26 nanometers.
The short end of the X-rays, and on down through the gamma rays, are in this neighborhood.
Answer:
a) a = 3.09 m/s²
b) aₓ = 2.60 m/s²
Explanation:
a) The magnitude of her acceleration can be calculated using the following equation:

<u>Where</u>:
: is the final speed = 8.89 m/s
: is the initial speed = 0 (since she starts from rest)
a: is the acceleration
d: is the distance = 12.8 m

Therefore, the magnitude of her acceleration is 3.09 m/s².
b) The component of her acceleration that is parallel to the ground is given by:

<u>Where</u>:
θ: is the angle respect to the ground = 32.6 °

Hence, the component of her acceleration that is parallel to the ground is 2.60 m/s².
I hope it helps you!
During the time that the pencil is exerting 50N of force on the marble, the marble is exerting 50N of force in exactly the opposite direction on the pencil. <em>(D) </em>The mass of the marble doesn't matter, and it doesn't even matter whether the marble is moving or perfectly still.
As soon as the pencil stops exerting any force on the marble, the marble immediately stops exerting any force on the pencil.