<u>Answer:</u> The fugacity coefficient of a gaseous species is 1.25
<u>Explanation:</u>
Fugacity coefficient is defined as the ratio of fugacity and the partial pressure of the gas. It is expressed as 
Mathematically,

Partial pressure of the gas is expressed as:

Putting this expression is above equation, we get:

where,
= fugacity coefficient of the gas
= fugacity of the gas = 25 psia
= mole fraction of the gas = 0.4
P = total pressure = 50 psia
Putting values in above equation, we get:

Hence, the fugacity coefficient of a gaseous species is 1.25
Answer:
A reduction potential measures the tendency of a molecule to be reduced by taking up new electrons. ... Standard reduction potentials can be useful in determining the directionality of a reaction. The reduction potential of a given species can be considered to be the negative of the oxidation potential.
Explanation:
A chemical change results from a chemical reaction, while a physical change is when matter changes forms but not chemical identity.
Examples of chemical changes are burning, cooking, rusting, and rotting.
Examples of physical changes are boiling, melting, freezing, and shredding.
Answer:
they're losing electrolytes
Explanation:
When athletes sweat, they're losing electrolytes primarily in the form of sodium (Na+) and chloride (Cl-), so when you start to replace lost fluids, ahtletes should replace the electrolytes as well. Potassium (K+), Magnesium (Mg2+) and Calcium (Ca2+) are electrolytes also lost through sweating.
Answer:
3 P atoms
Explanation:
Al₂P₃ => contains 2 Aluminum ions (2Al⁺³) and 3 Phosphide ions (3P⁻³) ... The ions (charged particles) are from atoms that have lost or gained electrons during the bonding process. So, Al₂P₃ => P⁻³ ions from 3 P atoms.