Answer:
2856.96 J
0
0

6.78822 m/s
Explanation:
= Initial velocity = 9.6 m/s
g = Acceleration due to gravity = 9.81 m/s²
h = Height
The athlete only interacts with the gravitational potential energy. Air resistance is neglected.
At height y = 0
Kinetic energy

At height y = 0 the potential energy is 0 as

At maximum height her velocity becomes 0 so the kinetic energy becomes zero.
As the the potential and kinetic energy are conserved
The general equation

Half of maximum height



The velocity of the athlete at half the maximum height is 6.78822 m/s
Answer:
scalar quantity
Explanation:
Vector quantities have two characteristics, a magnitude and a direction. Scalar quantities have only a magnitude.
Answer:
<h2> r=mv/Be</h2>
Explanation:
If a positive charge enters a magnetic field at 90 degrees the charge is deflected in a circular path by a force that acts perpendicular to it in line with Flemings right-hand rule
to derive the radius of the path of the charge we apply
F= mv^2/r=Bev
where
m= mass of the electronic charge
e=charge
B=magnetic field
v=average speed
r=radius
rearranging we have
r=mv^2/Bev
r=mv/Be
Explanation:
Missing Details. Most models can't incorporate all the details of complex natural phenomena.
Most Are Approximations. Most models include some approximations as a convenient way to describe something
Use the formula M=D×V:
M=10 g/cm³ * 5 cm³ = 50 g
which is more than 40 grams, so the container cannot hold the chain.